725 research outputs found
Continuous Hawking-Page transitions in Einstein-scalar gravity
We investigate continuous Hawking-Page transitions in Einstein's gravity
coupled to a scalar field with an arbitrary potential in the weak gravity
limit. We show that this is only possible in a singular limit where the
black-hole horizon marginally traps a curvature singularity. Depending on the
subleading terms in the potential, a rich variety of continuous phase
transitions arise. Our examples include second and higher order, including the
Berezinskii-Kosterlitz-Thouless type. In the case when the scalar is dilaton,
the condition for a continuous phase transition lead to (asymptotically)
linear-dilaton background. We obtain the scaling laws of thermodynamic
functions, as well as the viscosity coefficients near the transition. In the
limit of weak gravitational interactions, the bulk viscosity asymptotes to a
universal constant, independent of the details of the scalar potential. As a
byproduct of our analysis we obtain a one-parameter family of kink solutions in
arbitrary dimension d that interpolate between AdS near the boundary and
linear-dilaton background in the deep interior. The continuous Hawking-Page
transitions found here serve as holographic models for normal-to superfluid
transitions.Comment: 35 pages + appendice
Contemporary management of atrial fibrillation: what can clinical registries tell us about stroke prevention and current therapeutic approaches?
Vanishing of phase coherence in underdoped Bi_2Sr_2CaCu_2O_8+d
Coherent time-domain spectroscopy is used to measure the screening and
dissipation of high-frequency electromagnetic fields in a set of underdoped
Bi_2Sr_2CaCu_2O_8+d thin films. The measurements provide direct evidence for a
phase-fluctuation driven transition from the superconductor to normal state,
with dynamics described well by the Berezinskii-Kosterlitz-Thouless theory of
vortex-pair unbinding.Comment: Nature, Vol. 398, 18 March 1999, pg. 221 4 pages with 4 included
figure
Charge Induced Vortex Lattice Instability
It has been predicted that superconducting vortices should be electrically
charged and that this effect is particularly enhanced for, high temperature
superconductors.\cite{kho95,bla96} Hall effect\cite{hag91} and nuclear magnetic
resonance (NMR) experiments\cite{kum01} suggest the existence of vortex
charging, but the effects are small and the interpretation controversial. Here
we show that the Abrikosov vortex lattice, characteristic of the mixed state of
superconductors, will become unstable at sufficiently high magnetic field if
there is charge trapped on the vortex core. Our NMR measurements of the
magnetic fields generated by vortices in BiSrCaCuO
single crystals\cite{che07} provide evidence for an electrostatically driven
vortex lattice reconstruction with the magnitude of charge on each vortex
pancake of x, depending on doping, in line
with theoretical estimates.\cite{kho95,kna05}Comment: to appear in Nature Physics; 6 pages, 7 figure
Presymptomatic risk assessment for chronic non-communicable diseases
The prevalence of common chronic non-communicable diseases (CNCDs) far
overshadows the prevalence of both monogenic and infectious diseases combined.
All CNCDs, also called complex genetic diseases, have a heritable genetic
component that can be used for pre-symptomatic risk assessment. Common single
nucleotide polymorphisms (SNPs) that tag risk haplotypes across the genome
currently account for a non-trivial portion of the germ-line genetic risk and
we will likely continue to identify the remaining missing heritability in the
form of rare variants, copy number variants and epigenetic modifications. Here,
we describe a novel measure for calculating the lifetime risk of a disease,
called the genetic composite index (GCI), and demonstrate its predictive value
as a clinical classifier. The GCI only considers summary statistics of the
effects of genetic variation and hence does not require the results of
large-scale studies simultaneously assessing multiple risk factors. Combining
GCI scores with environmental risk information provides an additional tool for
clinical decision-making. The GCI can be populated with heritable risk
information of any type, and thus represents a framework for CNCD
pre-symptomatic risk assessment that can be populated as additional risk
information is identified through next-generation technologies.Comment: Plos ONE paper. Previous version was withdrawn to be updated by the
journal's pdf versio
Spin- and energy relaxation of hot electrons at GaAs surfaces
The mechanisms for spin relaxation in semiconductors are reviewed, and the
mechanism prevalent in p-doped semiconductors, namely spin relaxation due to
the electron-hole exchange interaction, is presented in some depth. It is shown
that the solution of Boltzmann-type kinetic equations allows one to obtain
quantitative results for spin relaxation in semiconductors that go beyond the
original Bir-Aronov-Pikus relaxation-rate approximation. Experimental results
using surface sensitive two-photon photoemission techniques show that the spin
relaxation-time of electrons in p-doped GaAs at a semiconductor/metal surface
is several times longer than the corresponding bulk spin relaxation-times. A
theoretical explanation of these results in terms of the reduced density of
holes in the band-bending region at the surface is presented.Comment: 33 pages, 12 figures; earlier submission replaced by corrected and
expanded version; eps figures now included in the tex
Non-Fermi-liquid d-wave metal phase of strongly interacting electrons
Developing a theoretical framework for conducting electronic fluids
qualitatively distinct from those described by Landau's Fermi-liquid theory is
of central importance to many outstanding problems in condensed matter physics.
One such problem is that, above the transition temperature and near optimal
doping, high-transition-temperature copper-oxide superconductors exhibit
`strange metal' behaviour that is inconsistent with being a traditional Landau
Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase
could shed new light on the interesting low-temperature behaviour in the
pseudogap regime and on the d-wave superconductor itself. Here we present a
theory for a specific example of a strange metal---the 'd-wave metal'. Using
variational wavefunctions, gauge theoretic arguments, and ultimately
large-scale density matrix renormalization group calculations, we show that
this remarkable quantum phase is the ground state of a reasonable microscopic
Hamiltonian---the usual t-J model with electron kinetic energy and two-spin
exchange supplemented with a frustrated electron `ring-exchange' term,
which we here examine extensively on the square lattice two-leg ladder. These
findings constitute an explicit theoretical example of a genuine
non-Fermi-liquid metal existing as the ground state of a realistic model.Comment: 22 pages, 12 figures: 6 pages, 7 figures of main text + 16 pages, 5
figures of Supplementary Information; this is approximately the version
published in Nature, minus various subedits in the main tex
Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain
Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk
Photoemission "experiments" on holographic superconductors
We study the effects of a superconducting condensate on holographic Fermi
surfaces. With a suitable coupling between the fermion and the condensate,
there are stable quasiparticles with a gap. We find some similarities with the
phenomenology of the cuprates: in systems whose normal state is a non-Fermi
liquid with no stable quasiparticles, a stable quasiparticle peak appears in
the condensed phase.Comment: 14 pages, 13 figures; v2: typos corrected and some clarification
adde
Recommended from our members
‘It was all my fault’: negative interpretation bias in depressed adolescents
The extent to which cognitive models of development and maintenance of depression apply to adolescents is largely untested, despite the widespread application of Cognitive Behavior Therapy (CBT) for depressed adolescents. Cognitive models suggest that negative cognitions, including interpretation bias, play a role in etiology and maintenance of depression. Given that cognitive development is incomplete by the teenage years and that CBT is not superior to non-cognitive treatments in the treatment of adolescent depression, it is important to test the underlying model. The primary aim of this study was to test the hypothesis that interpretation biases are exhibited by depressed adolescents. Four groups of adolescents were recruited: clinically-referred depressed (n = 27), clinically-referred non-depressed (n = 24), community with elevated depression symptoms (n = 42) and healthy community (n = 150). Participants completed a 20 item ambiguous scenarios questionnaire. Clinically-referred depressed adolescents made significantly more negative interpretations and rated scenarios as less pleasant than all other groups. The results suggest that this element of the cognitive model of depression is applicable to adolescents. Other aspects of the model should be tested so that cognitive treatment can be modified or adapted if necessary
- …
