79 research outputs found
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
Glycine Inhibitory Dysfunction Turns Touch into Pain through PKCgamma Interneurons
Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. During tactile allodynia, activation of the sensory fibers which normally detect touch elicits pain. Here we provide a new behavioral investigation into the dynamic component of tactile allodynia that developed in rats after segmental removal of glycine inhibition. Using in vivo electrophysiological recordings, we show that in this condition innocuous mechanical stimuli could activate superficial dorsal horn nociceptive specific neurons. These neurons do not normally respond to touch. We anatomically show that the activation was mediated through a local circuit involving neurons expressing the gamma isoform of protein kinase C (PKCγ). Selective inhibition of PKCγ as well as selective blockade of glutamate NMDA receptors in the superficial dorsal horn prevented both activation of the circuit and allodynia. Thus, our data demonstrates that a normally inactive circuit in the dorsal horn can be recruited to convert touch into pain. It also provides evidence that glycine inhibitory dysfunction gates tactile input to nociceptive specific neurons through PKCγ-dependent activation of a local, excitatory, NMDA receptor-dependent, circuit. As a consequence of these findings, we suggest that pharmacological inhibition of PKCγ might provide a new tool for alleviating allodynia in the clinical setting
Stem cells in liver regeneration and therapy
The liver has adapted to the inflow of ingested toxins by the evolutionary development of unique regenerative properties and responds to injury or tissue loss by the rapid division of mature cells. Proliferation of the parenchymal cells, i.e. hepatocytes and epithelial cells of the bile duct, is regulated by numerous cytokine/growth-factor-mediated pathways and is synchronised with extracellular matrix degradation and restoration of the vasculature. Resident hepatic stem/progenitor cells have also been identified in small numbers in normal liver and implicated in liver tissue repair. Their putative role in the physiology, pathophysiology and therapy of the liver, however, is not yet precisely known. Hepatic stem/progenitor cells also known as “oval cells” in rodents have been implicated in liver tissue repair, at a time when the capacity for hepatocyte and bile duct replication is exhausted or experimentally inhibited (facultative stem/progenitor cell pool). Although much more has to be learned about the role of stem/progenitor cells in the physiology and pathophysiology of the liver, experimental analysis of the therapeutic value of these cells has been initiated. Transplantation of hepatic stem/progenitor cells or in vivo pharmacological activation of the pool of hepatic stem cells may provide novel modalities for the therapy of liver diseases. In addition, extrahepatic stem cells (e.g. bone marrow cells) are being investigated for their contribution to liver regeneration. Hepatic progenitor cells derived from embryonic stem cells are included in this review, which also discusses future perspectives of stem cell-based therapies for liver diseases
Present and future evolution of advanced breast cancer therapy
Although the introduction of novel therapies and drug combinations has improved the prognosis of metastatic breast cancer, the disease remains incurable. Increased knowledge of the biology and the molecular alterations in breast cancer has facilitated the design of targeted therapies. These agents include receptor and nonreceptor tyrosine kinase inhibitors (epidermal growth factor receptor family), intracellular signaling pathways (phosphatidylinositol-3-kinase, AKT, mammalian target of rapamycin) angiogenesis inhibitors and agents that interfere with DNA repair (poly(ADP-ribose) polymerase inhibitors). In the present review, we present the most promising studies of these new targeted therapies and novel combinations of targeted therapies with cytotoxic agents
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus
Thoraco-lumbar selective fusion in adolescent idiopathic scoliosis with Lenke C modifier curves: clinical and radiographic analysis at 10-year follow-up
- …
