318 research outputs found
Influences on gum feeding in primates
This chapter reviews the factors that may affect patterns of gum feeding by primates. These are then examined for mixed-species troops of saddleback (S. fuscicollis) and mustached (S. mystax) tamarins. An important distinction is made between gums produced by tree trunks and branches as a result of damage and those produced by seed pods as part of a dispersal strategy as these may be expected to differ in their biochemistry. Feeding on fruit and Parkia seed pod exudates was more prevalent in the morning whereas other exudates were eaten in the afternoon. This itinerary may represent a deliberate strategy to retain trunk gums in the gut overnight, thus maximising the potential for microbial fermentation of their β-linked oligosaccharides. Both types of exudates were eaten more in the dry than the wet season. Consumption was linked to seasonal changes in resource availability and not the tamarins’ reproductive status pro-viding no support for the suggestion that gums are eaten as a pri-mary calcium source in the later stages of gestation and lactation. The role of availability in determining patterns of consumption is further supported by the finding that dietary overlap for the trunk gums eaten was greater between species within mixed-species troops within years than it was within species between years. These data and those for pygmy marmosets (Cebuella pygmaea) suggest that patterns of primate gummivory may reflect the interaction of prefer-ence and availability for both those able to stimulate gum production and those not
Impacts of past abrupt land change on local biodiversity globally
Abrupt land change, such as deforestation or agricultural intensification, is a key driver of biodiversity change. Following abrupt land change, local biodiversity often continues to be influenced through biotic lag effects. However, current understanding of how terrestrial biodiversity is impacted by past abrupt land changes is incomplete. Here we show that abrupt land change in the past continues to influence present species assemblages globally. We combine geographically and taxonomically broad data on local biodiversity with quantitative estimates of abrupt land change detected within time series of satellite imagery from 1982 to 2015. Species richness and abundance were 4.2% and 2% lower, respectively, and assemblage composition was altered at sites with an abrupt land change compared to unchanged sites, although impacts differed among taxonomic groups. Biodiversity recovered to levels comparable to unchanged sites after >10 years. Ignoring delayed impacts of abrupt land changes likely results in incomplete assessments of biodiversity change
Taxonomic and functional turnover are decoupled in European peat bogs
In peatland ecosystems, plant communities mediate a globally significant carbon store. The effects of global environmental change on plant assemblages are expected to be a factor in determining how ecosystem functions such as carbon uptake will respond. Using vegetation data from 56 Sphagnum-dominated peat bogs across Europe, we show that in these ecosystems plant species aggregate into two major clusters that are each defined by shared response to environmental conditions. Across environmental gradients, we find significant taxonomic turnover in both clusters. However, functional identity and functional redundancy of the community as a whole remain unchanged. This strongly suggests that in peat bogs, species turnover across environmental gradients is restricted to functionally similar species. Our results demonstrate that plant taxonomic and functional turnover are decoupled, which may allow these peat bogs to maintain ecosystem functioning when subject to future environmental change
Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation
Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation
A probabilistic unified approach for power indices in simple games
The final publication is available at Springer via https://doi.org/10.1007/978-3-662-60555-4_11Many power indices on simple games have been defined trying to measure, under different points of view, the “a priori” importance of a voter in a collective binary voting scenario. A unified probabilistic way to define some of these power indices is considered in this paper. We show that six well-known power indices are obtained under such a probabilistic approach. Moreover, some new power indices can naturally be obtained in this way.Peer ReviewedPostprint (author's final draft
Food site residence time and female competitive relationships in wild gray-cheeked mangabeys (Lophocebus albigena)
Authors of socioecological models propose that food distribution affects female social relationships in that clumped food resources, such as fruit, result in strong dominance hierarchies and favor coalition formation with female relatives. A number of Old World monkey species have been used to test predictions of the socioecological models. However, arboreal forest-living Old World monkeys have been understudied in this regard, and it is legitimate to ask whether predominantly arboreal primates living in tropical forests exhibit similar or different patterns of behavior. Therefore, the goal of our study was to investigate female dominance relationships in relation to food in gray-cheeked mangabeys (Lophocebus albigena). Since gray-cheeked mangabeys are largely frugivorous, we predicted that females would have linear dominance hierarchies and form coalitions. In addition, recent studies suggest that long food site residence time is another important factor in eliciting competitive interactions. Therefore, we also predicted that when foods had long site residence times, higher-ranking females would be able to spend longer at the resource than lower-ranking females. Analyses showed that coalitions were rare relative to some other Old World primate species, but females had linear dominance hierarchies. We found that, contrary to expectation, fruit was not associated with more agonism and did not involve long site residence times. However, bark, a food with a long site residence time and potentially high resource value, was associated with more agonism, and higher-ranking females were able to spend more time feeding on it than lower-ranking females. These results suggest that higher-ranking females may benefit from higher food and energy intake rates when food site residence times are long. These findings also add to accumulating evidence that food site residence time is a behavioral contributor to female dominance hierarchies in group-living species
Forest biodiversity, ecosystem functioning and the provision of ecosystem services
Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services
Identically self-blocking clutters
A clutter is identically self-blocking if it is equal to its blocker. We prove that every identically self-blocking clutter different from is nonideal. Our proofs borrow tools from Gauge Duality and Quadratic Programming. Along the way we provide a new lower bound for the packing number of an arbitrary clutter
Evaluation of nutritional status in children with refractory epilepsy
BACKGROUND: children affected by refractory epilepsy could be at risk of malnutrition because of feeding difficulties (anorexia, chewing, swallowing difficulties or vomiting) and chronic use of anticonvulsants, which may affect food intake and energy metabolism. Moreover, their energy requirement may be changed as their disabilities would impede normal daily activities. The aim of the present study was to evaluate nutritional status, energy metabolism and food intake in children with refractory epilepsy. METHODS: 17 children with refractory epilepsy (13 boys and 4 girls; mean age 9 ± 3,2 years; Body Mass Index 15,7 ± 3,6) underwent an anthropometric assessment, body composition evaluation by dual-energy X-ray absorptiometry, detailed dietetic survey and measurement of resting energy expenditure by indirect calorimetry. Weight-for-age, height-for-age (stunting) and weight-for-height (wasting) were estimated compared to those of a reference population of the same age. RESULTS: 40% of children were malnourished and 24% were wasted. The nutritional status was worse in the more disabled children. Dietary intake resulted unbalanced (18%, 39%, 43% of total daily energy intake derived respectively from protein, lipid and carbohydrate). Adequacy index [nutrient daily intake/recommended allowance (RDA) × 100] was < 60% for calcium iron and zinc. CONCLUSION: many children with refractory epilepsy would benefit from individual nutritional assessment and management as part of their overall care
Premenstrual enhancement of snake detection in visual search in healthy women
It is well known that adult humans detect images of snakes as targets more quickly than images of flowers as targets whether the images are in color or gray-scale. When such visual searches were performed by a total of 60 adult premenopausal healthy women in the present study to examine whether their performance would fluctuate across the phases of the menstrual cycle, snake detection was found to become temporarily enhanced during the luteal phase as compared to early or late follicular phases. This is the first demonstration of the existence of within-individual variation of the activity of the fear module, as a predictable change in cognitive strength, which appears likely to be due to the hormonal changes that occur in the menstrual cycle of healthy women
- …
