21,244 research outputs found
Proof-of-concept demonstration of an all-optical de-multiplexer using III-V/SOI microdisk resonator fabricated in a CMOS pilot line
We present a proof-of-concept demonstration of all-optical de-multiplexing of a non-return-to zero 10Gbps data controlled by 2.5GHz clock in an ultra-small III-V-on-silicon microdisk fabricated in a CMOS pilot line
Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach
Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution
Symmetries of Snyder--de Sitter space and relativistic particle dynamics
We study the deformed conformal-Poincare symmetries consistent with the
Snyder--de Sitter space. A relativistic particle model invariant under these
deformed symmetries is given. This model is used to provide a gauge independent
derivation of the Snyder--de Sitter algebra. Our results are valid in the
leading order in the parameters appearing in the model.Comment: 12 pages, LaTeX, version appearing in JHEP, minor changes to match
published versio
Charge Lattices and Consistency of 6D Supergravity
We extend the known consistency conditions on the low-energy theory of
six-dimensional N = 1 supergravity. We review some facts about the theory of
two-form gauge fields and conclude that the charge lattice Gamma for such a
theory has to be self-dual. The Green-Schwarz anomaly cancellation conditions
in the supergravity theory determine a sublattice of Gamma. The condition that
this sublattice can be extended to a self-dual lattice Gamma leads to a strong
constraint on theories that otherwise appear to be self-consistent.Comment: 15 pages. v2: minor changes; references, additional example added;
v3: minor corrections and clarifications added, JHEP versio
Performance optimization of a leagility inspired supply chain model: a CFGTSA algorithm based approach
Lean and agile principles have attracted considerable interest in the past few decades. Industrial sectors throughout the world are upgrading to these principles to enhance their performance, since they have been proven to be efficient in handling supply chains. However, the present market trend demands a more robust strategy incorporating the salient features of both lean and agile principles. Inspired by these, the leagility principle has emerged, encapsulating both lean and agile features. The present work proposes a leagile supply chain based model for manufacturing industries. The paper emphasizes the various aspects of leagile supply chain modeling and implementation and proposes a new Hybrid Chaos-based Fast Genetic Tabu Simulated Annealing (CFGTSA) algorithm to solve the complex scheduling problem prevailing in the leagile environment. The proposed CFGTSA algorithm is compared with the GA, SA, TS and Hybrid Tabu SA algorithms to demonstrate its efficacy in handling complex scheduling problems
Fluid and Diffusion Limits for Bike Sharing Systems
Bike sharing systems have rapidly developed around the world, and they are
served as a promising strategy to improve urban traffic congestion and to
decrease polluting gas emissions. So far performance analysis of bike sharing
systems always exists many difficulties and challenges under some more general
factors. In this paper, a more general large-scale bike sharing system is
discussed by means of heavy traffic approximation of multiclass closed queueing
networks with non-exponential factors. Based on this, the fluid scaled
equations and the diffusion scaled equations are established by means of the
numbers of bikes both at the stations and on the roads, respectively.
Furthermore, the scaling processes for the numbers of bikes both at the
stations and on the roads are proved to converge in distribution to a
semimartingale reflecting Brownian motion (SRBM) in a -dimensional box,
and also the fluid and diffusion limit theorems are obtained. Furthermore,
performance analysis of the bike sharing system is provided. Thus the results
and methodology of this paper provide new highlight in the study of more
general large-scale bike sharing systems.Comment: 34 pages, 1 figure
All-Printed, Stretchable Zn-Ag2O Rechargeable Battery via Hyperelastic Binder for Self-Powering Wearable Electronics
While several stretchable batteries utilizing either deterministic or random composite architectures have been described, none have been fabricated using inexpensive printing technologies. In this study, the authors printed a highly stretchable, zinc-silver oxide (Zn-Ag2O) battery by incorporating polystyrene-block-polyisoprene-block-polystyrene (SIS) as a hyperelastic binder for custom-made printable inks. The remarkable mechanical properties of the SIS binder lead to an all-printed, stretchable Zn-Ag2O rechargeable battery with a ≈2.5 mA h cm−2 reversible capacity density even after multiple iterations of 100% stretching. This battery offers the highest reversible capacity and discharge current density for intrinsically stretchable batteries reported to date. The electrochemical and mechanical properties are characterized under different strain conditions. The new stress-enduring printable inks pave ways for further developing stretchable electronics for the wide range of wearable applications
Transfer RNA-derived small RNAs in the cancer transcriptome
The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing
- …
