2,235 research outputs found
Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms
This paper studies variational principles for mechanical systems with symmetry and their applications to integration algorithms. We recall some general features of how to reduce variational principles in the presence of a symmetry group along with general features of integration algorithms for mechanical systems. Then we describe some integration algorithms based directly on variational principles using a
discretization technique of Veselov. The general idea for these variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the original systems invariants, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. The resulting mechanical integrators are second-order accurate, implicit, symplectic-momentum algorithms. We apply these integrators to the rigid body and the double spherical pendulum to show that the techniques are competitive with existing integrators
Specificity, Privacy, and Degeneracy in the CD4 T Cell Receptor Repertoire Following Immunization.
T cells recognize antigen using a large and diverse set of antigen-specific receptors created by a complex process of imprecise somatic cell gene rearrangements. In response to antigen-/receptor-binding-specific T cells then divide to form memory and effector populations. We apply high-throughput sequencing to investigate the global changes in T cell receptor sequences following immunization with ovalbumin (OVA) and adjuvant, to understand how adaptive immunity achieves specificity. Each immunized mouse contained a predominantly private but related set of expanded CDR3β sequences. We used machine learning to identify common patterns which distinguished repertoires from mice immunized with adjuvant with and without OVA. The CDR3β sequences were deconstructed into sets of overlapping contiguous amino acid triplets. The frequencies of these motifs were used to train the linear programming boosting (LPBoost) algorithm LPBoost to classify between TCR repertoires. LPBoost could distinguish between the two classes of repertoire with accuracies above 80%, using a small subset of triplet sequences present at defined positions along the CDR3. The results suggest a model in which such motifs confer degenerate antigen specificity in the context of a highly diverse and largely private set of T cell receptors
Feature selection using a one dimensional naïve Bayes' classifier increases the accuracy of support vector machine classification of CDR3 repertoires.
MOTIVATION: Somatic DNA recombination, the hallmark of vertebrate adaptive immunity, has the potential to generate a vast diversity of antigen receptor sequences. How this diversity captures antigen specificity remains incompletely understood. In this study we use high throughput sequencing to compare the global changes in T cell receptor β chain complementarity determining region 3 (CDR3β) sequences following immunization with ovalbumin administered with complete Freund's adjuvant (CFA) or CFA alone. RESULTS: The CDR3β sequences were deconstructed into short stretches of overlapping contiguous amino acids. The motifs were ranked according to a one-dimensional Bayesian classifier score comparing their frequency in the repertoires of the two immunization classes. The top ranking motifs were selected and used to create feature vectors which were used to train a support vector machine. The support vector machine achieved high classification scores in a leave-one-out validation test reaching : >90% in some cases. SUMMARY: The study describes a novel two-stage classification strategy combining a one-dimensional Bayesian classifier with a support vector machine. Using this approach we demonstrate that the frequency of a small number of linear motifs three amino acids in length can accurately identify a CD4 T cell response to ovalbumin against a background response to the complex mixture of antigens which characterize Complete Freund's Adjuvant. AVAILABILITY AND IMPLEMENTATION: The sequence data is available at www.ncbi.nlm.nih.gov/sra/?term¼SRP075893 The Decombinator package is available at github.com/innate2adaptive/Decombinator The R package e1071 is available at the CRAN repository https://cran.r-project.org/web/packages/e1071/index.html CONTACT: [email protected] information: Supplementary data are available at Bioinformatics online
Belowground DNA-based techniques: untangling the network of plant root interactions
Contains fulltext :
91591.pdf (publisher's version ) (Closed access)7 p
Presymptomatic risk assessment for chronic non-communicable diseases
The prevalence of common chronic non-communicable diseases (CNCDs) far
overshadows the prevalence of both monogenic and infectious diseases combined.
All CNCDs, also called complex genetic diseases, have a heritable genetic
component that can be used for pre-symptomatic risk assessment. Common single
nucleotide polymorphisms (SNPs) that tag risk haplotypes across the genome
currently account for a non-trivial portion of the germ-line genetic risk and
we will likely continue to identify the remaining missing heritability in the
form of rare variants, copy number variants and epigenetic modifications. Here,
we describe a novel measure for calculating the lifetime risk of a disease,
called the genetic composite index (GCI), and demonstrate its predictive value
as a clinical classifier. The GCI only considers summary statistics of the
effects of genetic variation and hence does not require the results of
large-scale studies simultaneously assessing multiple risk factors. Combining
GCI scores with environmental risk information provides an additional tool for
clinical decision-making. The GCI can be populated with heritable risk
information of any type, and thus represents a framework for CNCD
pre-symptomatic risk assessment that can be populated as additional risk
information is identified through next-generation technologies.Comment: Plos ONE paper. Previous version was withdrawn to be updated by the
journal's pdf versio
Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in reward-related ventral striatum activity in African- and European-Americans.
Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European-Americans (EA; 2927 cases) and 3132 African-Americans (AA: 1315 cases) participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome-wide significant (GWS; P < 5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of substance use may lead to the identification of novel ancestry-specific genetic markers of risk
Empirical Distributions of F-ST from Large-Scale Human Polymorphism Data
Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s FST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-FST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically FST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global FST distribution closely follows an exponential distribution. Third, although the overall FST distribution is similarly shaped (inverse J), FST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-FST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the FST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Recommended from our members
Leveraging population admixture to characterize the heritability of complex traits.
Despite recent progress on estimating the heritability explained by genotyped SNPs (h(2)g), a large gap between h(2)g and estimates of total narrow-sense heritability (h(2)) remains. Explanations for this gap include rare variants or upward bias in family-based estimates of h(2) due to shared environment or epistasis. We estimate h(2) from unrelated individuals in admixed populations by first estimating the heritability explained by local ancestry (h(2)γ). We show that h(2)γ = 2FSTCθ(1 - θ)h(2), where FSTC measures frequency differences between populations at causal loci and θ is the genome-wide ancestry proportion. Our approach is not susceptible to biases caused by epistasis or shared environment. We applied this approach to the analysis of 13 phenotypes in 21,497 African-American individuals from 3 cohorts. For height and body mass index (BMI), we obtained h(2) estimates of 0.55 ± 0.09 and 0.23 ± 0.06, respectively, which are larger than estimates of h(2)g in these and other data but smaller than family-based estimates of h(2)
- …
