342 research outputs found
Predicting Women's Recidivism Using the Dynamic Risk Assessment for Offender Re-Entry: Preliminary Evidence of Predictive Validity With Community-Sentenced Women Using a "Gender-Neutral" Risk Measure
Although men and women share risk factors for offending, some scholars suggest these factors operate differently across gender and that women-specific risk factors are neglected in existing “gender-neutral” risk assessment tools. This article explored the predictive validity of one gender-neutral risk assessment tool—the Dynamic Risk Assessment for Offender Re-Entry (DRAOR)—with matched samples of women and men serving community supervision sentences. Total DRAOR scores had comparative predictive validity across gender. For women and men, the DRAOR predicted reconviction over a static risk measure. The findings support the general premise of gender neutrality, but do not necessarily suggest the DRAOR, or gender-neutral tools more broadly, are the best tools for use with women
MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4
Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer
Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies
Ecological conditions determine extinction risk in co-evolving bacteria-phage populations.
BACKGROUND: Antagonistic coevolution between bacteria and their viral parasites, phage, drives continual evolution of resistance and infectivity traits through recurrent cycles of adaptation and counter-adaptation. Both partners are vulnerable to extinction through failure of adaptation. Environmental conditions may impose unequal abiotic selection pressures on each partner, destabilising the coevolutionary relationship and increasing the extinction risk of one partner. In this study we explore how the degree of population mixing and resource supply affect coevolution-induced extinction risk by coevolving replicate populations of Pseudomonas fluorescens SBW25 with its associated lytic phage SBW25Ф2 under four treatment regimens incorporating low and high resource availability with mixed or static growth conditions. RESULTS: We observed an increased risk of phage extinction under population mixing, and in low resource conditions. High levels of evolved bacterial resistance promoted phage extinction at low resources under both mixed and static conditions, whereas phage populations could survive when phage susceptible bacterial genotypes rose to high frequency. CONCLUSIONS: These findings demonstrate that phage extinction risk is influenced by multiple abiotic conditions, which together act to destabilise the bacteria-phage coevolutionary relationship. The risk of coevolution-induced extinction is therefore dependent on the ecological context
Allosteric Modulation of the HIV-1 gp120-gp41 Association Site by Adjacent gp120 Variable Region 1 (V1) N-Glycans Linked to Neutralization Sensitivity
The HIV-1 gp120-gp41 complex, which mediates viral fusion and cellular entry, undergoes rapid evolution within its external glycan shield to enable escape from neutralizing antibody (NAb). Understanding how conserved protein determinants retain functionality in the context of such evolution is important for their evaluation and exploitation as potential drug and/ or vaccine targets. In this study, we examined how the conserved gp120-gp41 association site, formed by the N- and Cterminal segments of gp120 and the disulfide-bonded region (DSR) of gp41, adapts to glycan changes that are linked to neutralization sensitivity. To this end, a DSR mutant virus (K601D) with defective gp120-association was sequentially passaged in peripheral blood mononuclear cells to select suppressor mutations. We reasoned that the locations of suppressors point to structural elements that are functionally linked to the gp120-gp41 association site. In culture 1, gp120 association and viral replication was restored by loss of the conserved glycan at Asn136 in V1 (T138N mutation) inconjunction with the L494I substitution in C5 within the association site. In culture 2, replication was restored with deletion of the N139INN sequence, which ablates the overlapping Asn141-Asn142-Ser-Ser potential N-linked glycosylation sequons inV1, in conjunction with D601N in the DSR. The 136 and 142 glycan mutations appeared to exert their suppressive effects by altering the dependence of gp120-gp41 interactions on the DSR residues, Leu593, Trp596 and Lys601. The 136 and/or 142glycan mutations increased the sensitivity of HIV-1 pseudovirions to the glycan-dependent NAbs 2G12 and PG16, and also pooled IgG obtained from HIV-1-infected individuals. Thus adjacent V1 glycans allosterically modulate the distal gp120-gp41 association site. We propose that this represents a mechanism for functional adaptation of the gp120-gp41 association site to an evolving glycan shield in a setting of NAb selection
Glycosylated naphthalimides and naphthalimide Tröger's bases as fluorescent aggregation probes for Con A.
Herein we report the synthesis of fluorescent, glycosylated 4-amino-1,8-naphthalimide (Nap) 1, and the related 1,8-naphthalimides Tröger's bases (TBNap) 2 and 3, from 1,8-naphthalic anhydride precursors, the α-mannosides being introduced through the use of CuAAC mediated 'click' chemistry. We investigate the photophysical properties of these probes in buffered solution and demonstrate their ability to function as fluorescent probes for Concanavalin A (Con A) lectin. We show that both the Nap and TBNap structures self-assemble in solution. The formation of the resulting supramolecular structures is driven by head-to-tail π-π stacking and extended hydrogen bonding interactions of the Nap and the triazole moieties. These interactions give rise to spherical nano-structures (ca. 260 nm and 100 nm, for 1 and 3, respectively), which interact with the Con-A protein, the interaction being probed by using both luminescent and Scanning Electron Microscopy imaging as well as dynamic light scattering measurements. Finally, we show that these supramolecular assembles can be used as luminescent imaging agents, through confocal fluorescence imaging of HeLa cells of the per-acetylated version 2
Sperm protein 17 is expressed in human nervous system tumours
BACKGROUND: Human sperm protein 17 (Sp17) is a highly conserved protein that was originally isolated from a rabbit epididymal sperm membrane and testis membrane pellet. It has recently been included in the cancer/testis (CT) antigen family, and shown to be expressed in multiple myeloma and ovarian cancer. We investigated its immunolocalisation in specimens of nervous system (NS) malignancies, in order to establish its usefulness as a target for tumour-vaccine strategies. METHODS: The expression of Sp17 was assessed by means of a standardised immunohistochemical procedure [(mAb/antigen) MF1/Sp17] in formalin-fixed and paraffin embedded surgical specimens of NS malignancies, including 28 neuroectodermal primary tumours (6 astrocytomas, 16 glioblastoma multiforme, 5 oligodendrogliomas, and 1 ependymoma), 25 meningeal tumours, and five peripheral nerve sheath tumours (4 schwannomas, and 1 neurofibroma),. RESULTS: A number of neuroectodermal (21%) and meningeal tumours (4%) were found heterogeneously immunopositive for Sp17. None of the peripheral nerve sheath tumours was immunopositive for Sp17. The expression pattern was heterogeneous in all of the positive samples, and did not correlate with the degree of malignancy. CONCLUSION: The frequency of expression and non-uniform cell distribution of Sp17 suggest that it cannot be used as a unique immunotherapeutic target in NS cancer. However, our results do show the immunolocalisation of Sp17 in a proportion of NS tumour cells, but not in their non-pathological counterparts. The emerging complex function of Sp17 makes further studies necessary to clarify the link between it and immunopositive cells
TSPY is a cancer testis antigen expressed in human hepatocellular carcinoma
In search for genes associated with hepatocellular carcinoma (HCC) by cDNA microarray, we found that the transcription of TSPY, ‘testis-specific protein Y-encoded', was upregulated in HCC. Investigation of a broad spectrum of normal and malignant tissues by RT–PCR revealed the TSPY transcript selectively expressed in normal testis, different histological types of human neoplastic tissues, and tumour cell lines. The expression of TSPY in cancer cells was further confirmed by in situ hybridisation. Indirect immunofluorescence microscopy analysis showed that TSPY was localised mainly in the cytoplasm of transiently transfected cells. Testis-specific protein Y-encoded was detected in 50% (16 of 32) of well- and moderately differentiated HCC patients, in 16% (four of 25) of poorly differentiated HCC patients, and in 5% (one of 19) of renal cell cancer patients. A serological survey revealed that 6.6% (seven of 106) HCC patients had anti-TSPY antibody response, demonstrating the immunogenicity of TSPY in humans. In conclusion, these data suggest that TSPY is a novel cancer/testis (CT) antigen and may be a potential candidate in vaccine strategy for immunotherapy in HCC patients
Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers
Developing an immunogen that elicits broadly neutralizing antibodies (bNAbs) is an elusive but important goal of HIV vaccine research, especially after the recent failure of the leading T cell based HIV vaccine in human efficacy trials. Even if such an immunogen can be developed, most animal model studies indicate that high serum neutralizing concentrations of bNAbs are required to provide significant benefit in typical protection experiments. One possible exception is provided by the anti-glycan bNAb 2G12, which has been reported to protect macaques against CXCR4-using SHIV challenge at relatively low serum neutralizing titers. Here, we investigated the ability of 2G12 administered intravenously (i.v.) to protect against vaginal challenge of rhesus macaques with the CCR5-using SHIVSF162P3. The results show that, at 2G12 serum neutralizing titers of the order of 1∶1 (IC90), 3/5 antibody-treated animals were protected with sterilizing immunity, i.e. no detectable virus replication following challenge; one animal showed a delayed and lowered primary viremia and the other animal showed a course of infection similar to 4 control animals. This result contrasts strongly with the typically high titers observed for protection by other neutralizing antibodies, including the bNAb b12. We compared b12 and 2G12 for characteristics that might explain the differences in protective ability relative to neutralizing activity. We found no evidence to suggest that 2G12 transudation to the vaginal surface was significantly superior to b12. We also observed that the ability of 2G12 to inhibit virus replication in target cells through antibody-mediated effector cell activity in vitro was equivalent or inferior to b12. The results raise the possibility that some epitopes on HIV may be better vaccine targets than others and support targeting the glycan shield of the envelope
- …
