181 research outputs found
Disease management for co-morbid depression and anxiety in diabetes mellitus: design of a randomised controlled trial in primary care
BACKGROUND: Depression and anxiety are common co-morbid health problems in patients with type 2 diabetes. Both depression and anxiety are associated with poor glycaemic control and increased risk of poor vascular outcomes and higher mortality rates. Results of previous studies have shown that in clinical practice, treatment of depression and anxiety is far from optimal as these symptoms are frequently overlooked and undertreated. METHODS/DESIGN: This randomised controlled trial will examine the effectiveness of a disease management programme treating symptoms of depression and anxiety in primary care patients with Type 2 diabetes. Patients will be randomized on patient level in 1:1 ratio. Random block sizes of 2 and 4 are used. The disease management programme consists of screening, stepped treatment and monitoring of symptoms (n = 80). This will be compared to care as usual (n = 80). DISCUSSION: The disease management model for co-morbid depression and anxiety in primary care patients with diabetes is expected to result in reduced symptoms of depression and anxiety, improved quality of life, reduced diabetes specific distress and improved glyceamic control, compared to care as usual. TRIAL REGISTRATION: Dutch Trial Register NTR262
Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice
Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal-contractile coupling
Specific detection of OCT3/4 isoform A/B/B1 expression in solid (germ cell) tumours and cell lines: Confirmation of OCT3/4 specificity for germ cell tumours
Background: OCT3/4 (POU5F1) is an established diagnostic immunohistochemical marker for specific histological variants of human malignant germ cell tumours (GCTs), including the seminomatous types and the stem cell component of non-seminomas, known as embryonal carcinoma. OCT3/4 is crucial for the regulation of pluripotency and the self-renewal of normal embryonic stem-and germ cells. Detection of expression of this transcription factor is complicated by the existence of multiple pseudogenes and isoforms. Various claims have been made about OCT3/4 expression in non-GCTs, possibly related to using nonspecific detection methods. False-positive findings undermine the applicability of OCT3/4 as a specific diagnostic tool in a clinical setting. In addition, false-positive findings could result in misinterpretation of pluripotency regulation in solid somatic cancers and their stem cells. Of the three identified isoforms-OCT4A, OCT4B and OCT4B1-only OCT4A proved to regulate pluripotency. Up until now, no convincing nuclear OCT4A protein expression has been shown in somatic cancers or tissues. Methods: This study investigates expression of the various OCT3/4 isoforms in GCTs (both differentiated and undifferentiated) and somatic (non-germ cell) cancers, including representative cell lines and xenografts. Results: Using specific methods, OCT4A and OCT4B1 are shown to be preferentially expressed in undifferentiated GCTs. The OCT4B variant shows no difference in expression between GCTs (either differentiated or undifferentiated) and somatic cancers. In spite of the presence of OCT4A mRNA in somatic cancer-derived cell lines, no OCT3/4
Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model.
Pulmonary tuberculosis (TB), caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb), is a major world health problem. The production of reactive nitrogen species (RNS) is a potent cytostatic and cytotoxic defense mechanism against intracellular pathogens. Nevertheless, the protective role of RNS during Mtb infection remains controversial. Here we use an anti-nitrotyrosine antibody as a readout to study nitration output by the zebrafish host during early mycobacterial pathogenesis. We found that recognition of Mycobacterium marinum, a close relative of Mtb, was sufficient to induce a nitrosative defense mechanism in a manner dependent on MyD88, the central adaptor protein in Toll like receptor (TLR) mediated pathogen recognition. However, this host response was attenuated by mycobacteria via a virulence mechanism independent of the well-characterized RD1 virulence locus. Our results indicate a mechanism of pathogenic mycobacteria to circumvent host defense in vivo. Shifting the balance of host-pathogen interactions in favor of the host by targeting this virulence mechanism may help to alleviate the problem of infection with Mtb strains that are resistant to multiple drug treatments
Zebrafish: A See-Through Host and a Fluorescent Toolbox to Probe Host–Pathogen Interaction
In many ways, the zebrafish represents a hybrid between mouse and invertebrate infection models. Powerful forwardgenetic tools that have made invertebrates justifiably famous are not only relatively accessible in the zebrafish, but have been exploited to yield new insights into human infectious diseases, including leprosy and tuberculosis [1]. Transgenic technologies have enabled detailed, non-invasive in vivo visualization of macrophages and neutrophils in pitched battle with bacteria and fungi [2,3]. Reverse genetics with morpholinos, vivo-morpholinos, and zinc-finger nucleases (but unfortunately not homologous recombination, which for the moment remains out of reach in this organism) enable examination of the roles of specific genes during infection. Flexible genetic systems such as Gal4-UAS and Cre-Lox permit tissue-specific transformation and ablation ([3]; Figure 1)
An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional state, Ethiopia
<p>Abstract</p> <p>Background</p> <p>Research was carried out in Konta Special Woreda (District); it is a remote area with lack of infrastructure like road to make any research activities in the area. Therefore, this research was conducted to investigate medicinal plants of the Konta people and to document the local knowledge before environmental and cultural changes deplete the resources.</p> <p>Methods</p> <p>The information was collected between October 2006 and February 2007. Interview-based field study constituted the main data collection method in which the gathering, preparation, use, previous and current status and cultivation practices were systematically investigated. The abundance, taxonomic diversity and distribution of medicinal plants were studied using ecological approach.</p> <p>Results</p> <p>A total of 120 species, grouped within 100 genera and 47 families that are used in traditional medical practices were identified and studied. The Fabaceae and Lamiaceae were the most commonly reported medicinal plants with 16 (13.3%) and 14 (12%) species, respectively. 25.4% of the total medicinal plants are collected from homegardens and the rest (74.6%) are collected from wild habitats. Of the total number of medicinal plants, 108 species (90%) were used to treat human ailments, 6 (5%) for livestock diseases and the remaining 6 (5%) were used to treat both human and livestock health problems. The major threats to medicinal plants reported include harvesting medicinal plants for firewood (24.8%) followed by fire (22.3%) and construction (19%). Of the four plant communities identified in the wild, more medicinal plant species (34) were found in community type-4 (<it>Hyparrhenia cymbaria</it>-<it>Erythrina abyssinica </it>community), which accounted for 61.8%.</p> <p>Conclusion</p> <p>Konta Special Woreda is an important area for medicinal plants and associated local knowledge; the natural vegetation being the most important reservoir for the majority of the medicinal plants. Environmental and cultural changes are in the process of threatening the resources and this signals the need for serious efforts to create public awareness so that measures are taken to conserve the medicinal plants in the natural ecosystems and other suitable environments.</p
Type II and VI collagen in nasal and articular cartilage and the effect of IL-1α on the distribution of these collagens
The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity of the chondrocytes. Treatment of the sections with hyaluronidase greatly enhanced the signal for both types of collagen. Also in sections of explants cultured with IL-1α a higher level of labeling of the collagens was found. This was apparent without any pre-treatment with hyaluronidase. Under the influence of IL-1α the area positive for type VI collagen that surrounded the chondrocytes broadened. Although the two collagens in both types of cartilage were distributed similarly, a remarkable difference was the higher degree of staining of type VI collagen in articular cartilage. Concomitantly we noted that digestion of this type of cartilage hardly occurred in the presence of IL-1α whereas nasal cartilage was almost completely degraded within 18 days of culture. Since type VI collagen is known to be relatively resistant to proteolysis we speculate that the higher level of type VI collagen in articular cartilage is important in protecting cartilage from digestion
The Interaction between Regulatory T Cells and NKT Cells in the Liver: A CD1d Bridge Links Innate and Adaptive Immunity
Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells.The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis.CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury.NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity
Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages
DNA damage regulated autophagy modulator 1 (DRAM1) is a stress-inducible regulator of autophagy and cell death. DRAM1 has been implicated in cancer, myocardial infarction, and infectious diseases, but the molecular and cellular functions of this transmembrane protein remain poorly understood. Previously, we have proposed DRAM1 as a host resistance factor for tuberculosis (TB) and a potential target for host-directed anti-infective therapies. In this study, we generated a zebrafish dram1 mutant and investigated its loss-of-function effects during Mycobacterium marinum (Mm) infection, a widely used model in TB research. In agreement with previous knockdown analysis, dram1 mutation increased the susceptibility of zebrafish larvae to Mm infection. RNA sequencing revealed major effects of Dram1 deficiency on metabolic, immune response, and cell death pathways during Mm infection, and only minor effects on proteinase and metabolic pathways were found under uninfected conditions. Furthermore, unchallenged dram1 mutants did not display overt autophagic defects, but autophagic targeting of Mm was reduced in the absence of Dram1. The phagocytic ability of macrophages in dram1 mutants was unaffected, but acidification of Mm-containing vesicles was strongly reduced, indicating that Dram1 is required for phagosome maturation. By in vivo imaging, we observed that Dram1-deficient macrophages fail to restrict Mm during early stages of infection. The resulting increase in bacterial burden could be reverted by knockdown of inflammatory caspase a (caspa) and gasdermin Eb (gsdmeb), demonstrating pyroptosis as the mechanism underlying premature cell death of Mm-infected macrophages in dram1 mutants. Collectively, these data demonstrate that dissemination of mycobacterial infection in zebrafish larvae is promoted in the absence of Dram1 due to reduced maturation of mycobacteria-containing vesicles, failed intracellular containment, and consequent pyroptotic death of infected macrophages. These results provide new evidence that Dram1 plays a central role in host resistance to intracellular infection, acting at the crossroad of autophagy and cell death
Down-Regulation of miR-101 in Endothelial Cells Promotes Blood Vessel Formation through Reduced Repression of EZH2
Angiogenesis is a balanced process controlled by pro- and anti-angiogenic molecules of which the regulation is not fully understood. Besides classical gene regulation, miRNAs have emerged as post-transcriptional regulators of angiogenesis. Furthermore, epigenetic changes caused by histone-modifying enzymes were shown to modulate angiogenesis as well. However, a possible interplay between miRNAs and histone-modulating enzymes during angiogenesis has not been described. Here we show that VEGF-mediated down-regulation of miR-101 caused pro-angiogenic effects. We found that the pro-angiogenic effects are partly mediated through reduced repression by miR-101 of the histone-methyltransferase EZH2, a member of the Polycomb group family, thereby increasing methylation of histone H3 at lysine 27 and transcriptome alterations. In vitro, the sprouting and migratory properties of primary endothelial cell cultures were reduced by inhibiting EZH2 through up-regulation of miR-101, siRNA-mediated knockdown of EZH2, or treatment with 3-Deazaneplanocin-A (DZNep), a small molecule inhibitor of EZH2 methyltransferase activity. In addition, we found that systemic DZNep administration reduced the number of blood vessels in a subcutaneous glioblastoma mouse model, without showing adverse toxicities. Altogether, by identifying a pro-angiogenic VEGF/miR-101/EZH2 axis in endothelial cells we provide evidence for a functional link between growth factor-mediated signaling, post-transcriptional silencing, and histone-methylation in the angiogenesis process. Inhibition of EZH2 may prove therapeutic in diseases in which aberrant vascularization plays a role
- …
