87,767 research outputs found
Prevalence and Prognostic Significance of Wall-Motion Abnormalities in Adults without Clinically Recognized Cardiovascilar Disease
Long-Term Human Video Generation of Multiple Futures Using Poses
Predicting future human behavior from an input human video is a useful task
for applications such as autonomous driving and robotics. While most previous
works predict a single future, multiple futures with different behavior can
potentially occur. Moreover, if the predicted future is too short (e.g., less
than one second), it may not be fully usable by a human or other systems. In
this paper, we propose a novel method for future human pose prediction capable
of predicting multiple long-term futures. This makes the predictions more
suitable for real applications. Also, from the input video and the predicted
human behavior, we generate future videos. First, from an input human video, we
generate sequences of future human poses (i.e., the image coordinates of their
body-joints) via adversarial learning. Adversarial learning suffers from mode
collapse, which makes it difficult to generate a variety of multiple poses. We
solve this problem by utilizing two additional inputs to the generator to make
the outputs diverse, namely, a latent code (to reflect various behaviors) and
an attraction point (to reflect various trajectories). In addition, we generate
long-term future human poses using a novel approach based on unidimensional
convolutional neural networks. Last, we generate an output video based on the
generated poses for visualization. We evaluate the generated future poses and
videos using three criteria (i.e., realism, diversity and accuracy), and show
that our proposed method outperforms other state-of-the-art works
Jet Trimming
Initial state radiation, multiple interactions, and event pileup can
contaminate jets and degrade event reconstruction. Here we introduce a
procedure, jet trimming, designed to mitigate these sources of contamination in
jets initiated by light partons. This procedure is complimentary to existing
methods developed for boosted heavy particles. We find that jet trimming can
achieve significant improvements in event reconstruction, especially at high
energy/luminosity hadron colliders like the LHC.Comment: 20 pages, 11 figures, 3 tables - Minor changes to text/figure
Exponential stability of variable coefficients Rayleigh beams under boundary feedback controls: A Riesz basis approach
In this paper, we study the boundary stabilizing feedback control problem of Rayleigh beams that have non-homogeneous spatial parameters. We show that no matter how non-homogeneous the Rayleigh beam is, as long as it has positive mass density, stiffness and mass moment of inertia, it can always be exponentially stabilized when the control parameters are properly chosen. The main steps are a detail asymptotic analysis of the spectrum of the system and the proving of that the generalized eigenfunctions of the feedback control system form a Riesz basis in the state Hilbert space. As a by-product, a conjecture in Guo (J. Optim. Theory Appl. 112(3) (2002) 529) is answered. © 2003 Elsevier B.V. All rights reserved.postprin
Exponential stabilization of laminated beams with structural damping and boundary feedback controls
We study the boundary stabilization of laminated beams with structural damping which describes the slip occurring at the interface of two-layered objects. By using an invertible matrix function with an eigenvalue parameter and an asymptotic technique for the first order matrix differential equation, we find out an explicit asymptotic formula for the matrix fundamental solutions and then carry out the asymptotic analyses for the eigenpairs. Furthermore, we prove that there is a sequence of generalized eigenfunctions that forms a Riesz basis in the state Hilbert space, and hence the spectrum determined growth condition holds. Furthermore, exponential stability of the closed-loop system can be deduced from the eigenvalue expressions. In particular, the semigroup generated by the system operator is a Co-group due to the fact that the three asymptotes of the spectrum are parallel to the imaginary axis. © 2005 Society for Industrial and Applied Mathematics.published_or_final_versio
Monoclonal antibody against cadherin-17 as a potential treatment for liver cancer
This journal suppl. entitled: Abstracts of The International Liver Congress™ 2012 – 47th annual meeting of the European Association for the Study of the Liver / Poster AbstractsBACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is a major type of liver cancer associated with high mortality. Prognosis is poor in HCC patients largely because of late diagnosis and limitations in treatment options. Therefore, this study aims to identify alternative target for HCC in hope to offer new treatments to patients. Cadherin-17 (CDH17) has been identified as an oncofetal molecule of HCC and that a suppression of its expression by RNA interference (RNAi) leads to anti-tumorigenesis. To supplement the drawbacks associated with the use of RNAi approach in biotherapy, we developed specific antibody against CDH17 for achieving similar purpose. METHODS: Hybridoma cell clones capable of secreting antibodies ...postprin
Recommended from our members
Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process
All solid-state batteries (ASSBs) have the potential to deliver higher energy densities, wider operating temperature range, and improved safety compared with today's liquid-electrolyte-based batteries. However, of the various solid-state electrolyte (SSE) classes - polymers, sulfides, or oxides - none alone can deliver the combined properties of ionic conductivity, mechanical, and chemical stability needed to address scalability and commercialization challenges. While promising strategies to overcome these include the use of polymer/oxide or sulfide composites, there is still a lack of fundamental understanding between different SSE-polymer-solvent systems and its selection criteria. Here, we isolate various SSE-polymer-solvent systems and study their molecular level interactions by combining various characterization tools. With these findings, we introduce a suitable Li7P3S11SSE-SEBS polymer-xylene solvent combination that significantly reduces SSE thickness (∼50 μm). The SSE-polymer composite displays high room temperature conductivity (0.7 mS cm-1) and good stability with lithium metal by plating and stripping over 2000 h at 1.1 mAh cm-2. This study suggests the importance of understanding fundamental SSE-polymer-solvent interactions and provides a design strategy for scalable production of ASSBs
Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease
We propose a new iterative segmentation model which can be accurately learned
from a small dataset. A common approach is to train a model to directly segment
an image, requiring a large collection of manually annotated images to capture
the anatomical variability in a cohort. In contrast, we develop a segmentation
model that recursively evolves a segmentation in several steps, and implement
it as a recurrent neural network. We learn model parameters by optimizing the
interme- diate steps of the evolution in addition to the final segmentation. To
this end, we train our segmentation propagation model by presenting incom-
plete and/or inaccurate input segmentations paired with a recommended next
step. Our work aims to alleviate challenges in segmenting heart structures from
cardiac MRI for patients with congenital heart disease (CHD), which encompasses
a range of morphological deformations and topological changes. We demonstrate
the advantages of this approach on a dataset of 20 images from CHD patients,
learning a model that accurately segments individual heart chambers and great
vessels. Com- pared to direct segmentation, the iterative method yields more
accurate segmentation for patients with the most severe CHD malformations.Comment: Presented at the Deep Learning in Medical Image Analysis Workshop,
MICCAI 201
On the inverse Compton scattering model of radio pulsars
Some characteristics of the inverse Compton scattering (ICS) model are
reviewed. At least the following properties of radio pulsars can be reproduced
in the model: core or central emission beam, one or two hollow emission cones,
different emission heights of these components, diverse pulse profiles at
various frequencies, linear and circular polarization features of core and
cones.Comment: 5 pages, no figures, LaTeX, a proceeding paper for Pacific Rim
Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin
"Boring formal methods" or "Sherlock Holmes deduction methods"?
This paper provides an overview of common challenges in teaching of logic and
formal methods to Computer Science and IT students. We discuss our experiences
from the course IN3050: Applied Logic in Engineering, introduced as a "logic
for everybody" elective course at at TU Munich, Germany, to engage pupils
studying Computer Science, IT and engineering subjects on Bachelor and Master
levels. Our goal was to overcome the bias that logic and formal methods are not
only very complicated but also very boring to study and to apply. In this
paper, we present the core structure of the course, provide examples of
exercises and evaluate the course based on the students' surveys.Comment: Preprint. Accepted to the Software Technologies: Applications and
Foundations (STAF 2016). Final version published by Springer International
Publishing AG. arXiv admin note: substantial text overlap with
arXiv:1602.0517
- …
