964 research outputs found

    Controlling spin relaxation with a cavity

    Get PDF
    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the spontaneous emission rate can be strongly enhanced by placing the quantum system in a resonant cavity -an effect which has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, underpinning single-photon sources. Here we report the first application of these ideas to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity of high quality factor and small mode volume, we reach for the first time the regime where spontaneous emission constitutes the dominant spin relaxation mechanism. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing that energy relaxation can be engineered and controlled on-demand. Our results provide a novel and general way to initialise spin systems into their ground state, with applications in magnetic resonance and quantum information processing. They also demonstrate that, contrary to popular belief, the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point where quantum fluctuations have a dramatic effect on the spin dynamics; as such our work represents an important step towards the coherent magnetic coupling of individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl

    The effects of temperature and body mass on jump performance of the locust Locusta migratoria

    Get PDF
    Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M0.17±0.08 (95% CI), jump take-off angle (A; degrees) scales as A = 52.5M0.00±0.06, and jump energy (E; mJ per jump) scales as E = 1.91M1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (Lf+t; mm) of the femur and tibia of the hind leg, Lf+t = 34.9M0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.Edward P. Snelling, Christie L. Becker, Roger S. Seymou

    Testing for ocean acidification during the Early Toarcian using δ44/40Ca and δ88/86Sr

    Get PDF
    During the Early Toarcian, volcanic gases released by the Karoo-Ferrar large igneous province are widely believed to have caused severe environmental disturbances, including ocean acidification. Here we show records of δ Ca and δ Sr through the Early Toarcian, as recorded in three groups of biogenic calcite: Megateuthididae belemnites, Passaloteuthididae belemnites, and brachiopods of the species Soaresirhynchia bouchardi. We evaluate the data to eliminate the influence on isotopic composition of varying temperature, calcification rate, and salinity, through the section that may mask the environmental signals. Neither δ Ca nor δ Sr show negative isotope excursions across the suggested acidification interval as would be expected had acidification occurred. A profile of δ B, re-interpreted from a published study, shows no variation through the interval. Taken together, these data provide little support for ocean acidification at this time. In our belemnites, values of δ Sr are independent of temperature or Sr/Ca. For brachiopods, too few data are available to determine whether such dependences exist. Values of δ Ca show a weak temperature control of magnitude +0.020 ± 0.004 ‰/°C (2 s.d.). In belemnites, δ Ca also correlates positively with Mg/Ca and Sr/Ca. 44/40 88/86 44/40 88/86 11 88/86 44/40 44/4

    Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    Get PDF
    Despite the importance of deep-sea corals, our current understanding of their ecology and evolutionis limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent reevaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea. As such, our data provides direction for future research and further insight to organismal response of deep sea coral to environmental change and ocean warming.Tis work was supported by King Abdullah University of Science and Technology (KAUST), baseline funds to CRV and Center Competitive Funding (CCF) Program FCC/1/1973-18-01

    Critical Thinking in Nursing Education: Literature Review

    Get PDF
    The need for critical thinking in nursing has been accentuated in response to the rapidly changing health care environment. Nurses must think critically to provide effective care whilst coping with the expansion in role associated with the complexities of current health care systems. This literature review will present a history of inquiry into critical thinking and research to support the conclusion that critical thinking is necessary not only in the clinical practice setting, but also as an integral component of nursing education programs to promote the development of nurses’ critical thinking abilities. The aims of this paper are: (a) to review the literature on critical thinking; (b) to examine the dimensions of critical thinking; (c) to investigate the various critical thinking strategies for their appropriateness to enhance critical thinking in nurses, and; (d) to examine issues relating to evaluation of critical thinking skills in nursing.</ul

    In silico assessment of biomedical products: the conundrum of rare but not so rare events in two case studies

    Get PDF
    In silico clinical trials, defined as “The use of individualized computer simulation in the development or regulatory evaluation of a medicinal product, medical device, or medical intervention,” have been proposed as a possible strategy to reduce the regulatory costs of innovation and the time to market for biomedical products. We review some of the the literature on this topic, focusing in particular on those applications where the current practice is recognized as inadequate, as for example, the detection of unexpected severe adverse events too rare to be detected in a clinical trial, but still likely enough to be of concern. We then describe with more details two case studies, two successful applications of in silico clinical trial approaches, one relative to the University of Virginia/Padova simulator that the Food and Drug Administration has accepted as possible replacement for animal testing in the preclinical assessment of artificial pancreas technologies, and the second, an investigation of the probability of cardiac lead fracture, where a Bayesian network was used to combine in vivo and in silico observations, suggesting a whole new strategy of in silico-augmented clinical trials, to be used to increase the numerosity where recruitment is impossible, or to explore patients’ phenotypes that are unlikely to appear in the trial cohort, but are still frequent enough to be of concern

    Stressed out symbiotes:hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi

    Get PDF
    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-016-3673-7) contains supplementary material, which is available to authorized users

    Adaptations to Endosymbiosis in a Cnidarian-Dinoflagellate Association: Differential Gene Expression and Specific Gene Duplications

    Get PDF
    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K–dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the symbiotic state and in the gastroderm. Our results thus offer new insight into the inter-partner signaling required for the physiological mechanisms of the symbiosis that is crucial for coral health

    Revealing the respiratory system of the coffee berry borer (Hypothenemus hampei; Coleoptera: Curculionidae: Scolytinae) using micro-computed tomography

    Get PDF
    The coffee berry borer (Hypothenemus hampei) is the most economically important insect pest of coffee globally. Micro-computed tomography (micro-CT) was used to reconstruct the respiratory system of this species for the first time; this is the smallest insect (ca. 2 mm long) for which this has been done to date. Anatomical details of the spiracles and tracheal tubes are described, images presented, and new terms introduced. The total volume and the relationship between tracheal lumen diameter, length and volume are also presented. The total length of the tracheal tubes are seventy times the length of the entire animal. Videos and a 3D model for use with mobile devices are included as supplementary information; these could be useful for future research and for teaching insect anatomy to students and the public in general.This paper benefitted from the sub-award agreement S15192.01 between Kansas State University (KSU) and the University of Granada, as part of a USDANIFA Award 2014-70016-23028 to S.J. Brown (KSU), “Developing an Infrastructure and Product Test Pipeline to Deliver Novel Therapies for Citrus Greening Disease” (2015–2020)
    corecore