63 research outputs found

    Stokes solitons in optical microcavities

    Get PDF
    Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy

    Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage

    Get PDF
    The human cathelicidin antimicrobial protein hCAP18, which includes the C-terminal peptide LL-37, is a multifunctional protein. As a possible approach to enhancing the resistance to plant disease, a DNA fragment coding for hCAP18/LL-37 was fused at the C-terminal end of the leader sequence of endopolygalacturonase-inhibiting protein under the control of the cauliflower mosaic virus 35S promoter region. The construct was then introduced into Brassica rapa. LL-37 expression was confirmed in transgenic plants by reverse transcription-polymerase chain reaction and western blot analysis. Transgenic plants exhibited varying levels of resistance to bacterial and fungal pathogens. The average size of disease lesions in the transgenic plants was reduced to less than half of that in wild-type plants. Our results suggest that the antimicrobial LL-37 peptide is involved in wide-spectrum resistance to bacterial and fungal pathogen infection

    Genetic Susceptibility on CagA-Interacting Molecules and Gene-Environment Interaction with Phytoestrogens: A Putative Risk Factor for Gastric Cancer

    Get PDF
    OBJECTIVES: To evaluate whether genes that encode CagA-interacting molecules (SRC, PTPN11, CRK, CRKL, CSK, c-MET and GRB2) are associated with gastric cancer risk and whether an interaction between these genes and phytoestrogens modify gastric cancer risk. METHODS: In the discovery phase, 137 candidate SNPs in seven genes were analyzed in 76 incident gastric cancer cases and 322 matched controls from the Korean Multi-Center Cancer Cohort. Five significant SNPs in three genes (SRC, c-MET and CRK) were re-evaluated in 386 cases and 348 controls in the extension phase. Odds ratios (ORs) for gastric cancer risk were estimated adjusted for age, smoking, H. pylori seropositivity and CagA strain positivity. Summarized ORs in the total study population (462 cases and 670 controls) were presented using pooled- and meta-analysis. Plasma concentrations of phytoestrogens (genistein, daidzein, equol and enterolactone) were measured using the time-resolved fluoroimmunoassay. RESULTS: SRC rs6122566, rs6124914, c-MET rs41739, and CRK rs7208768 showed significant genetic effects for gastric cancer in both the pooled and meta-analysis without heterogeneity (pooled OR = 3.96 [95% CI 2.05-7.65], 1.24 [95% CI = 1.01-1.53], 1.19 [95% CI = 1.01-1.41], and 1.37 [95% CI = 1.15-1.62], respectively; meta OR = 4.59 [95% CI 2.74-7.70], 1.36 [95% CI = 1.09-1.70], 1.20 [95% CI = 1.00-1.44], and 1.32 [95% CI = 1.10-1.57], respectively). Risk allele of CRK rs7208768 had a significantly increased risk for gastric cancer at low phytoestrogen levels (p interaction<0.05). CONCLUSIONS: Our findings suggest that SRC, c-MET and CRK play a key role in gastric carcinogenesis by modulating CagA signal transductions and interaction between CRK gene and phytoestrogens modify gastric cancer risk

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    Polygenic prediction of body mass index and obesity through the life course and across ancestries

    Get PDF
    Polygenic scores (PGSs) for body mass index (BMI) may guide early prevention and targeted treatment of obesity. Using genetic data from up to 5.1 million people (4.6% African ancestry, 14.4% American ancestry, 8.4% East Asian ancestry, 71.1% European ancestry and 1.5% South Asian ancestry) from the GIANT consortium and 23andMe, Inc., we developed ancestry-specific and multi-ancestry PGSs. The multi-ancestry score explained 17.6% of BMI variation among UK Biobank participants of European ancestry. For other populations, this ranged from 16% in East Asian-Americans to 2.2% in rural Ugandans. In the ALSPAC study, children with higher PGSs showed accelerated BMI gain from age 2.5 years to adolescence, with earlier adiposity rebound. Adding the PGS to predictors available at birth nearly doubled explained variance for BMI from age 5 onward (for example, from 11% to 21% at age 8). Up to age 5, adding the PGS to early-life BMI improved prediction of BMI at age 18 (for example, from 22% to 35% at age 5). Higher PGSs were associated with greater adult weight gain. In intensive lifestyle intervention trials, individuals with higher PGSs lost modestly more weight in the first year (0.55 kg per s.d.) but were more likely to regain it. Overall, these data show that PGSs have the potential to improve obesity prediction, particularly when implemented early in life
    corecore