58 research outputs found

    Examining the feasibility of mixture risk assessment: A case study using a tiered approach with data of 67 pesticides from the Joint FAO/WHO Meeting on Pesticide Residues (JMPR)

    Get PDF
    The way in which mixture risk assessment (MRA) should be included in chemical risk assessment is a current topic of debate. We used data from 67 recent pesticide evaluations to build a case study using Hazard Index calculations to form risk estimates in a tiered MRA approach in line with a Framework proposed by WHO/IPCS. The case study is used to illustrate the approach and to add detail to the existing Framework, and includes many more chemicals than previous case studies.A low-tier MRA identified risk as being greater than acceptable, but refining risk estimates in higher tiers was not possible due to data requirements not being readily met. Our analysis identifies data requirements, which typically expand dramatically in higher tiers, as being the likely cause for an MRA to fail in many realistic cases. This forms a major obstacle to routine implementation of MRA and shows the need for systematic generation and collection of toxicological data. In low tiers, hazard quotient inspection identifies chemicals that contribute most to the HI value and thus require attention if further refinement is needed. Implementing MRA requires consensus on issues such as scope setting, criteria for performing refinement, and decision criteria for actions.Oak Foundation (Grant number OCAY-13-391), which is gratefully acknowledged, and partly in the context of an European Food Safety Authority contract (CFT/EFSA/PPR/2010/04

    Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA)

    Get PDF
    The International Agency for Research on Cancer (IARC) Monographs Programme identifies chemicals, drugs, mixtures, occupational exposures, lifestyles and personal habits, and physical and biological agents that cause cancer in humans and has evaluated about 1000 agents since 1971. Monographs are written by ad hoc Working Groups (WGs) of international scientific experts over a period of about 12 months ending in an eight-day meeting. The WG evaluates all of the publicly available scientific information on each substance and, through a transparent and rigorous process,1 decides on the degree to which the scientific evidence supports that substance's potential to cause or not cause cancer in humans. For Monograph 112,2 17 expert scientists evaluated the carcinogenic hazard for four insecticides and the herbicide glyphosate.3 The WG concluded that the data for glyphosate meet the criteria for classification as a probable human carcinogen. The European Food Safety Authority (EFSA) is the primary agency of the European Union for risk assessments regarding food safety. In October 2015, EFSA reported4 on their evaluation of the Renewal Assessment Report5 (RAR) for glyphosate that was prepared by the Rapporteur Member State, the German Federal Institute for Risk Assessment (BfR). EFSA concluded that ?glyphosate is unlikely to pose a carcinogenic hazard to humans and the evidence does not support classification with regard to its carcinogenic potential?. Addendum 1 (the BfR Addendum) of the RAR5 discusses the scientific rationale for differing from the IARC WG conclusion. Serious flaws in the scientific evaluation in the RAR incorrectly characterise the potential for a carcinogenic hazard from exposure to glyphosate. Since the RAR is the basis for the European Food Safety Agency (EFSA) conclusion,4 it is critical that these shortcomings are corrected

    Acute Human Self-Poisoning with Imidacloprid Compound: A Neonicotinoid Insecticide

    Get PDF
    Background: Deliberate self-poisoning with older pesticides such as organophosphorus compounds are commonly fatal and a serious public health problem in the developing world. The clinical consequences of self-poisoning with newer pesticides are not well described. Such information may help to improve clinical management and inform pesticide regulators of their relative toxicity. This study reports the clinical outcomes and toxicokinetics of the neonicotinoid insecticide imidacloprid following acute self-poisoning in humans. Methodology/Principal Findings: Demographic and clinical data were prospectively recorded in patients with imidacloprid exposure in three hospitals in Sri Lanka. Blood samples were collected when possible for quantification of imidacloprid concentration. There were 68 patients (61 self-ingestions and 7 dermal exposures) with exposure to imidacloprid. Of the self-poisoning patients, the median time to presentation was 4 hours (IQR 2.3–6.0) and median amount ingested was 15 mL (IQR 10–50 mL). Most patients only developed mild symptoms such as nausea, vomiting, headache and diarrhoea. One patient developed respiratory failure needing mechanical ventilation while another was admitted to intensive care due to prolonged sedation. There were no deaths. Median admission imidacloprid concentration was 10.58 ng/L; IQR: 3.84–15.58 ng/L, Range: 0.02–51.25 ng/L. Changes in the concentration of imidacloprid in serial blood samples were consistent with prolonged absorption and/or saturable elimination. Conclusions: Imidacloprid generally demonstrates low human lethality even in large ingestions. Respiratory failure and reduced level of consciousness were the most serious complications, but these were uncommon. Substitution of imidacloprid for organophosphorus compounds in areas where the incidence of self-poisoning is high may help reduce deaths from self-poisoning
    corecore