22 research outputs found

    Transgenerational Effects of Parental Larval Diet on Offspring Development Time, Adult Body Size and Pathogen Resistance in Drosophila melanogaster

    Get PDF
    Environmental conditions experienced by parents are increasingly recognized to affect offspring performance. We set out to investigate the effect of parental larval diet on offspring development time, adult body size and adult resistance to the bacterium Serratia marcescens in Drosophila melanogaster. Flies for the parental generation were raised on either poor or standard diet and then mated in the four possible sex-by-parental diet crosses. Females that were raised on poor food produced larger offspring than females that were raised on standard food. Furthermore, male progeny sired by fathers that were raised on poor food were larger than male progeny sired by males raised on standard food. Development times were shortest for offspring whose one parent (mother or the father) was raised on standard and the other parent on poor food and longest for offspring whose parents both were raised on poor food. No evidence for transgenerational effects of parental diet on offspring disease resistance was found. Although paternal effects have been previously demonstrated in D. melanogaster, no earlier studies have investigated male-mediated transgenerational effects of diet in this species. The results highlight the importance of not only considering the relative contribution each parental sex has on progeny performance but also the combined effects that the two sexes may have on offspring performance

    Spotlight on landmark oncology trials: the latest evidence and novel trial designs

    Full text link
    The era of precision oncology is marked with prominent successes in the therapy of advanced soft tissue sarcomas, breast cancer, ovarian cancer and haematological neoplasms, among others. Moreover, recent trials of immune checkpoint inhibitors in melanoma, non-small cell lung carcinoma, and head and neck cancers have significantly influenced the therapeutic landscape by providing promising evidence for immunotherapy efficacy in the adjuvant setting in high-risk locoregional disease. To speed up the introduction of targeted therapy for cancer patients, novel phase II trials are being designed, and may likely form the basis for the 'landmark trials' of the future. A special article collection in BMC Medicine, "Spotlight on landmark oncology trials", features articles from invited experts on recent clinical practice-changing trials

    Hormetic effects of repeated exposures to cold at young age on longevity, aging and resistance to heat or cold shocks in Drosophila melanogaster.

    No full text
    Exposing young flies to hypergravity has hormetic effects on aging, longevity and resistance to heat stress. The present experiments tested whether cold shocks at young age could also have hormetic effects. Flies were cold-shocked at 0 degrees C daily for 60 min during two periods of 5 days separated by 2 days, starting at 5 days of age. This cold stress increased longevity, resistance to a lethal heat stress or to cold up to 6 weeks of age, resistance to a non-lethal heat stress at middle age, and delayed behavioral aging. Cold and hypergravity exposure at young age have thus similar effects, excepting on resistance to cold stress, which is not increased after exposure to hypergravity. Mild heat stress has also been shown to slightly increase longevity and resistance to a lethal heat stress, but not to delay behavioral aging. Since there are thus at least two mild stresses with large hormetic effects at old age in flies, i.e. cold and hypergravity, hormetic effects in flies are not stress-specific. Therefore, it could be hypothetized that hormetic effects of mild stress on aging and longevity are a general phenomenon and that they could also be observed in other species such as rodents

    Fasting can protect young and middle-aged Drosophila melanogaster flies against a severe cold stress.

    No full text
    International audienceFlies were starved with water before being subjected to various severe stresses (heat, cold, fungal infection, hydrogen peroxide) immediately after starvation or after a delay. Starvation of young and middle-aged flies increased resistance to a long cold stress (0 °C for up to 48 h), mainly if there was a 2-6 h delay between starvation and the cold stress, but positive effects in old flies were hardly observed. No positive effect was observed on resistance to the other stresses and starvation rather decreased resistance to them. It thus seems that fasting increases frailty but also puts at play mechanisms increasing resistance to cold. Starvation also increased learning scores but this could be linked to decreased positive phototaxis tendencies, and not to a better learning ability. Starvation appears to be a mild stress with limited hormetic effects, but studying the mechanisms of these effects is of interest because fasting is maybe of therapeutic value in human beings
    corecore