82 research outputs found
Judgment of Learning Accuracy in High-functioning Adolescents and Adults with Autism Spectrum Disorder
This study explored whether adults and adolescents with autism spectrum disorder (ASD) demonstrate difficulties making metacognitive judgments, specifically judgments of learning. Across two experiments, the study examined whether individuals with ASD could accurately judge whether they had learnt a piece of information (in this case word pairs). In Experiment 1, adults with ASD demonstrated typical accuracy on a standard ‘cue-alone’ judgment of learning (JOL) task, compared to age- and IQmatched neurotypical adults. Additionally, in Experiment 2, adolescents with ASD demonstrated typical accuracy on both a standard ‘cue-alone’ JOL task, and a ‘cue-target’ JOL task. These results suggest that JOL accuracy is unimpaired in ASD. These results have important implications for both theories of metacognition in ASD and educational practise
Lichen response to ammonia deposition defines the footprint of a penguin rookery
Ammonia volatilized from penguin rookeries is a major nitrogen source in Antarctic coastal terrestrial ecosystems. However, the spatial extent of ammonia dispersion from rookeries and its impacts have not been quantified previously. We measured ammonia concentration in air and lichen ecophysiological response variables proximate to an Adèlie penguin rookery at Cape Hallett, northern Victoria Land. Ammonia emitted from the rookery was 15N-enriched (δ15N value +6.9) and concentrations in air ranged from 36–75 µg m−3 at the rookery centre to 0.05 µg m−3 at a distance of 15.3 km. δ15N values and rates of phosphomonoesterase (PME) activity in the lichens Usnea sphacelata and Umbilicaria decussata were strongly negatively related to distance from the rookery and PME activity was positively related to thallus N:P mass ratio. In contrast, the lichen Xanthomendoza borealis, which is largely restricted to within an area 0.5 km from the rookery perimeter, had high N, P and 15N concentrations but low PME activity suggesting that nutrient scavenging capacity is suppressed in highly eutrophicated sites. An ammonia dispersion model indicates that ammonia concentrations sufficient to significantly elevate PME activity and δ15N values (≥0.1 µg NH3 m−3) occurred over c. 40–300 km2 surrounding the rookery suggesting that penguin rookeries potentially can generate large spatial impact zones. In a general linear model NH3 concentration and lichen species identity were found to account for 72 % of variation in the putative proportion of lichen thallus N originating from penguin derived NH3. The results provide evidence of large scale impact of N transfer from a marine to an N-limited terrestrial ecosystem
Recommended from our members
Constrained pre-equalization accounting for multi-path fading emulated using large RC networks: applications to wireless and photonics communications
Multi-path propagation is modelled assuming a multi-layer RC network with randomly allocated resistors and capacitors to represent the transmission medium. Due to frequency-selective attenuation, the waveforms associated with each propagation path incur path-dependent distortion. A pre-equalization procedure that takes into account the capabilities of the transmission source as well as the transmission properties of the medium is developed. The problem is cast within a Mixed Integer Linear Programming optimization framework that uses the developed nominal RC network model, with the excitation waveform customized to optimize signal fidelity from the transmitter to the receiver. The objective is to match a Gaussian pulse input accounting for frequency regions where there would be pronounced fading. Simulations are carried out with different network realizations in order to evaluate the sensitivity of the solution with respect to changes in the transmission medium mimicking the multi-path propagation. The proposed approach is of relevance where equalization techniques are difficult to implement. Applications are discussed within the context of emergent communication modalities across the EM spectrum such as light percolation as well as emergent indoor communications assuming various modulation protocols or UWB schemes as well as within the context of space division multiplexing
Strong Neurophilosophy and the Matter of Bat Consciousness: A case study
In “What is it like to be boring and myopic?” Kathleen Akins offers an interesting, empirically driven, argument for thinking that there is nothing that it is like to be a bat. She suggests that bats are “boring” in the sense that they are governed by behavioral scripts and simple, non-representational, control loops, and are best characterized as biological automatons. Her approach has been well received by philosophers sympathetic to empirically informed philosophy of mind. But, despite its influence, her work has not met with any critical appraisal.
It is argued that a reconsideration of the empirical results shows that bats are not boring automatons, driven by short input-output loops, instincts, and reflexes. Grounds are provided for thinking that bats satisfy a range of philosophically and scientifically interesting elaborations of the general idea that consciousness is best understood in terms of representational functions. A more complete examination of bat sensory capabilities suggests there is something that it is like after all.
The discussion of bats is also used to develop an objection to strongly neurophilosophical approaches to animal consciousness
A precise bathymetric map of the world’s deepest seafloor, Challenger Deep in the Mariana Trench
Data from three bathymetric surveys by R/V Kairei using a 12-kHz multibeam echosounder and differential GPS were used to create an improved topographic model of the Challenger Deep in the southwestern part of the Mariana Trench, which is known as the deepest seafloor in the world. The strike of most of the elongated structures related to plate bending accompanied by subduction of the Pacific plate is N70°E and is not parallel to the trench axis. The bending-related structures were formed by reactivation of seafloor spreading fabric. Challenger Deep consists of three en echelon depressions along the trench axis, each of which is 6-10 km long, about 2 km wide, and deeper than 10,850 m. The eastern depression is the deepest, with a depth of 10,920 ± 5 m
Further investigations upon the water movements in the English Channel. Drift-bottle experiments in the summers of 1927, 1928 and 1929, with critical notes on drift-bottle experiments in general
The water movements in the neighbourhood of the English Channel - North Sea junction. Drift bottle experiments.
- …
