280 research outputs found
Single electron emission in two-phase xenon with application to the detection of coherent neutrino-nucleus scattering
We present an experimental study of single electron emission in ZEPLIN-III, a
two-phase xenon experiment built to search for dark matter WIMPs, and discuss
applications enabled by the excellent signal-to-noise ratio achieved in
detecting this signature. Firstly, we demonstrate a practical method for
precise measurement of the free electron lifetime in liquid xenon during normal
operation of these detectors. Then, using a realistic detector response model
and backgrounds, we assess the feasibility of deploying such an instrument for
measuring coherent neutrino-nucleus elastic scattering using the ionisation
channel in the few-electron regime. We conclude that it should be possible to
measure this elusive neutrino signature above an ionisation threshold of
3 electrons both at a stopped pion source and at a nuclear reactor.
Detectable signal rates are larger in the reactor case, but the triggered
measurement and harder recoil energy spectrum afforded by the accelerator
source enable lower overall background and fiducialisation of the active
volume
Debris Disks: Probing Planet Formation
Debris disks are the dust disks found around ~20% of nearby main sequence
stars in far-IR surveys. They can be considered as descendants of
protoplanetary disks or components of planetary systems, providing valuable
information on circumstellar disk evolution and the outcome of planet
formation. The debris disk population can be explained by the steady
collisional erosion of planetesimal belts; population models constrain where
(10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size)
typically form in protoplanetary disks. Gas is now seen long into the debris
disk phase. Some of this is secondary implying planetesimals have a Solar
System comet-like composition, but some systems may retain primordial gas.
Ongoing planet formation processes are invoked for some debris disks, such as
the continued growth of dwarf planets in an unstirred disk, or the growth of
terrestrial planets through giant impacts. Planets imprint structure on debris
disks in many ways; images of gaps, clumps, warps, eccentricities and other
disk asymmetries, are readily explained by planets at >>5au. Hot dust in the
region planets are commonly found (<5au) is seen for a growing number of stars.
This dust usually originates in an outer belt (e.g., from exocomets), although
an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of
Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018
Variation, variability, and the origin of the avian endocranium:Insights from the anatomy of alioramus altai (theropoda: Tyrannosauroidea)
The internal braincase anatomy of the holotype of Alioramus altai, a relatively small-bodied tyrannosauroid from the Late Cretaceous of Mongolia, was studied using high-resolution computed tomography. A number of derived characters strengthen the diagnosis of this taxon as both a tyrannosauroid and a unique, new species (e.g., endocranial position of the gasserian ganglion, internal ramification of the facial nerve). Also present are features intermediate between the basal theropod and avialan conditions that optimize as the ancestral condition for Coelurosauria--a diverse group of derived theropods that includes modern birds. The expression of several primitive theropod features as derived character states within Tyrannosauroidea establishes previously unrecognized evolutionary complexity and morphological plasticity at the base of Coelurosauria. It also demonstrates the critical role heterochrony may have played in driving patterns of endocranial variability within the group and potentially reveals stages in the evolution of neuroanatomical development that could not be inferred based solely on developmental observations of the major archosaurian crown clades. We discuss the integration of paleontology with variability studies, especially as applied to the nature of morphological transformations along the phylogenetically long branches that tend to separate the crown clades of major vertebrate groups
Biotransformation of lanthanum by Aspergillus niger
Lanthanum is an important rare earth element and has many applications in modern electronics and catalyst manufacturing. However, there exist several obstacles in the recovery and cycling of this element due to a low average grade in exploitable deposits and low recovery rates by energy-intensive extraction procedures. In this work, a novel method to transform and recover La has been proposed using the geoactive properties of Aspergillus niger. La-containing crystals were formed and collected after A. niger was grown on Czapek-Dox agar medium amended with LaCl 3. Energy-dispersive X-ray analysis (EDXA) showed the crystals contained C, O, and La; scanning electron microscopy revealed that the crystals were of a tabular structure with terraced surfaces. X-ray diffraction identified the mineral phase of the sample as La 2(C 2O 4) 3·10H 2O. Thermogravimetric analysis transformed the oxalate crystals into La 2O 3 with the kinetics of thermal decomposition corresponding well with theoretical calculations. Geochemical modelling further confirmed that the crystals were lanthanum decahydrate and identified optimal conditions for their precipitation. To quantify crystal production, biomass-free fungal culture supernatants were used to precipitate La. The results showed that the precipitated lanthanum decahydrate achieved optimal yields when the concentration of La was above 15 mM and that 100% La was removed from the system at 5 mM La. Our findings provide a new aspect in the biotransformation and biorecovery of rare earth elements from solution using biomass-free fungal culture systems. </p
Btk regulates macrophage polarization in response to lipopolysaccharide
Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (−\−)) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(−/−) macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(−/−) macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(−/−) macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (−/−) mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation
Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis
Fungus-growing ants employ several defenses against diseases, including disease-suppressing microbial biofilms on their integument and in fungal gardens. Here, we compare the phenology of microbiomes in natural nests of the temperate fungus-growing ant Trachymyrmex septentrionalis using culture-dependent isolations and culture-independent 16S-amplicon 454-sequencing. 454-sequencing revealed diverse actinobacteria associated with ants, including most prominently Solirubrobacter (12.2–30.9% of sequence reads), Pseudonocardia (3.5–42.0%), and Microlunatus (0.4–10.8%). Bacterial abundances remained relatively constant in monthly surveys throughout the annual active period (late winter to late summer), except Pseudonocardia abundance declined in females during the reproductive phase. Pseudonocardia species found on ants are phylogenetically different from those in gardens and soil, indicating ecological separation of these Pseudonocardia types. Because the pathogen Escovopsis is not known to infect gardens of T. septentrionalis, the ant-associated microbes do not seem to function in Escovopsis suppression, but could protect against ant diseases, help in nest sanitation, or serve unknown functions
Hypoglycemia Assessed by Continuous Glucose Monitoring Is Associated with Preclinical Atherosclerosis in Individuals with Impaired Glucose Tolerance
Hypoglycemia is associated with increased risk of cardiovascular adverse clinical outcomes. There is evidence that impaired glucose tolerance (IGT) is associated with cardiovascular morbidity and mortality. Whether IGT individuals have asymptomatic hypoglycemia under real-life conditions that are related to early atherosclerosis is unknown. To this aim, we measured episodes of hypoglycemia during continuous interstitial glucose monitoring (CGM) and evaluated their relationship with early manifestation of vascular atherosclerosis in glucose tolerant and intolerant individuals. An oral glucose tolerance test (OGTT) was performed in 79 non-diabetic subjects. Each individual underwent continuous glucose monitoring for 72 h. Cardiovascular risk factors and ultrasound measurement of carotid intima-media thickness (IMT) were evaluated. IGT individuals had a worse cardiovascular risk profile, including higher IMT, and spent significantly more time in hypoglycemia than glucose-tolerant individuals. IMT was significantly correlated with systolic (r = 0.22; P = 0.05) and diastolic blood pressure (r = 0.28; P = 0.01), total (r = 0.26; P = 0.02) and LDL cholesterol (r = 0.27; P = 0.01), 2-h glucose (r = 0.39; P<0.0001), insulin sensitivity (r = −0.26; P = 0.03), and minutes spent in hypoglycemia (r = 0.45; P<0.0001). In univariate analyses adjusted for gender, minutes spent in hypoglycemia were significantly correlated with age (r = 0.26; P = 0.01), waist circumference (r = 0.33; P = 0.003), 2-h glucose (r = 0.58; P<0.0001), and 2-h insulin (r = 0.27; P = 0.02). In a stepwise multivariate regression analysis, the variables significantly associated with IMT were minutes spent in hypoglycemia (r2 = 0.252; P<0.0001), and ISI index (r2 = 0.089; P = 0.004), accounting for 34.1% of the variation. Episodes of hypoglycemia may be considered as a new potential cardiovascular risk factor for IGT individuals
Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake
<p>Abstract</p> <p>Background</p> <p>The amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenuating effect on rising atmospheric CO<sub>2 </sub>by stimulating the vegetation productivity and accumulation of carbon in biomass.</p> <p>Results</p> <p>This study shows that elevated nitrogen deposition would not significantly enhance land carbon uptake unless we consider its effects on re-growing forests. Our results suggest that nitrogen enriched land ecosystems sequestered 0.62–2.33 PgC in the 1980s and 0.75–2.21 PgC in the 1990s depending on the proportion and age of re-growing forests. During these two decades land ecosystems are estimated to have absorbed 13–41% of carbon emitted by fossil fuel burning.</p> <p>Conclusion</p> <p>Although land ecosystems and especially forests with lifted nitrogen limitations have the potential to decelerate the rise of CO<sub>2 </sub>concentrations in the atmosphere, the effect is only significant over a limited period of time. The carbon uptake associated with forest re-growth and amplified by high nitrogen deposition will decrease as soon as the forests reach maturity. Therefore, assessments relying on carbon stored on land from enhanced atmospheric nitrogen deposition to balance fossil fuel emissions may be inaccurate.</p
Effects of Total Resources, Resource Ratios, and Species Richness on Algal Productivity and Evenness at Both Metacommunity and Local Scales
The study of the interrelationship between productivity and biodiversity is a major research field in ecology. Theory predicts that if essential resources are heterogeneously distributed across a metacommunity, single species may dominate productivity in individual metacommunity patches, but a mixture of species will maximize productivity across the whole metacommunity. It also predicts that a balanced supply of resources within local patches should favor species coexistence, whereas resource imbalance would favor the dominance of one species. We performed an experiment with five freshwater algal species to study the effects of total supply of resources, their ratios, and species richness on biovolume production and evenness at the scale of both local patches and metacommunities. Generally, algal biovolume increased, whereas algal resource use efficiency (RUE) and evenness decreased with increasing total supply of resources in mixed communities containing all five species. In contrast to predictions for biovolume production, the species mixtures did not outperform all monocultures at the scale of metacommunities. In other words, we observed no general transgressive overyielding. However, RUE was always higher in mixtures than predicted from monocultures, and analyses indicate that resource partitioning or facilitation in mixtures resulted in higher-than-expected productivity at high resource supply. Contrasting our predictions for the local scale, balanced supply of resources did not generally favor higher local evenness, however lowest evenness was confined to patches with the most imbalanced supply. Thus, our study provides mixed support for recent theoretical advancements to understand biodiversity-productivity relationships
Individual and school level correlates of moderate to vigorous physical activity among school-children in Germany – a multi-level analysis
- …
