2,071 research outputs found
Identification of a small molecule inhibitor of Ebolavirus genome replication and transcription using in silico screening.
Ebola virus (EBOV) causes a severe haemorrhagic fever in humans and has a mortality rate over 50%. With no licensed drug treatments available, EBOV poses a significant threat. Investigations into possible therapeutics have been severely hampered by the classification of EBOV as a BSL4 pathogen. Here, we describe a drug discovery pathway combining in silico screening of compounds predicted to bind to a hydrophobic pocket on the nucleoprotein (NP); with a robust and rapid EBOV minigenome assay for inhibitor validation at BSL2. One compound (MCCB4) was efficacious (EC50 4.8 μM), exhibited low cytotoxicity (CC50 > 100 μM) and was specific, with no effect on either a T7 RNA polymerase driven firefly luciferase or a Bunyamwera virus minigenome. Further investigations revealed that this small molecule inhibitor was able to outcompete established replication complexes, an essential aspect for a potential EBOV treatment
Heat Shock Protein 70 family members interact with Crimean-Congo hemorrhagic fever virus and Hazara virus nucleocapsid proteins and perform a functional role in the nairovirus replication cycle
The Nairovirus genus of the Bunyaviridae family contains serious human and animal pathogens classified within multiple serogroups and species. Of these serogroups, the Crimean-Congo hemorrhagic fever virus (CCHFV) serogroup comprises sole members CCHFV and Hazara virus (HAZV). CCHFV is an emerging zoonotic virus that causes often-fatal hemorrhagic fever in infected humans for which preventative or therapeutic strategies are not available. In contrast HAZV is non-pathogenic to humans, and thus represents an excellent model to study aspects of CCHFV biology under more accessible biological containment. The three RNA segments that form the nairovirus genome are encapsidated by the viral nucleocapsid protein (N) to form ribonucleoprotein (RNP) complexes that are substrates for RNA synthesis and packaging into virus particles. We used quantitative proteomics to identify cellular interaction partners of CCHFV N, and identified robust interactions with cellular chaperones. These interactions were validated using immunological methods, and the specific interaction between native CCHFV N and cellular chaperones of the HSP70 family was confirmed during live CCHFV infection. Using infectious HAZV we showed for the first time that the nairovirus N-HSP70 association was maintained within both infected cells and virus particles, where N is assembled as RNPs. Reduction of active HSP70 levels in cells using small molecule inhibitors significantly reduced HAZV titres, and a model for chaperone function in the context of high genetic variability is proposed. These results suggest chaperones of the HSP70 family are required for nairovirus replication and thus represent a genetically stable cellular therapeutic target for preventing nairovirus-mediated disease
The statistical neuroanatomy of frontal networks in the macaque
We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework
Human performance and strategies while solving an aircraft routing and sequencing problem: an experimental approach
As airport resources are stretched to meet increasing demand for services, effective use of ground infrastructure is increasingly critical for ensuring operational efficiency. Work in operations research has produced algorithms providing airport tower controllers with guidance on optimal timings and sequences for flight arrivals, departures, and ground movement. While such decision support systems have the potential to improve operational efficiency, they may also affect users’ mental workload, situation awareness, and task performance. This work sought to identify performance outcomes and strategies employed by human decision makers during an experimental airport ground movement control task with the goal of identifying opportunities for enhancing user-centered tower control decision support systems. To address this challenge, thirty novice participants solved a set of vehicle routing problems presented in the format of a game representing the airport ground movement task practiced by runway controllers. The games varied across two independent variables, network map layout (representing task complexity) and gameplay objective (representing task flexibility), and verbal protocol, visual protocol, task performance, workload, and task duration were collected as dependent variables. A logistic regression analysis revealed that gameplay objective and task duration significantly affected the likelihood of a participant identifying the optimal solution to a game, with the likelihood of an optimal solution increasing with longer task duration and in the less flexible objective condition. In addition, workload appeared unaffected by either independent variable, but verbal protocols and visual observations indicated that high-performing participants demonstrated a greater degree of planning and situation awareness. Through identifying human behavior during optimization problem solving, the work of tower control can be better understood, which, in turn, provides insights for developing decision support systems for ground movement management
Single electron emission in two-phase xenon with application to the detection of coherent neutrino-nucleus scattering
We present an experimental study of single electron emission in ZEPLIN-III, a
two-phase xenon experiment built to search for dark matter WIMPs, and discuss
applications enabled by the excellent signal-to-noise ratio achieved in
detecting this signature. Firstly, we demonstrate a practical method for
precise measurement of the free electron lifetime in liquid xenon during normal
operation of these detectors. Then, using a realistic detector response model
and backgrounds, we assess the feasibility of deploying such an instrument for
measuring coherent neutrino-nucleus elastic scattering using the ionisation
channel in the few-electron regime. We conclude that it should be possible to
measure this elusive neutrino signature above an ionisation threshold of
3 electrons both at a stopped pion source and at a nuclear reactor.
Detectable signal rates are larger in the reactor case, but the triggered
measurement and harder recoil energy spectrum afforded by the accelerator
source enable lower overall background and fiducialisation of the active
volume
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches
Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
- …
