202 research outputs found
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese: The Singapore Chinese health study
Background: Genome-wide association studies (GWAS) have identified genetic factors in type 2 diabetes (T2D), mostly among individuals of European ancestry. We tested whether previously identified T2D-associated single nucleotide polymorphisms (SNPs) replicate and whether SNPs in regions near known T2D SNPs were associated with T2D within the Singapore Chinese Health Study. Methods: 2338 cases and 2339 T2D controls from the Singapore Chinese Health Study were genotyped for 507,509 SNPs. Imputation extended the genotyped SNPs to 7,514,461 with high estimated certainty (r2>0.8). Replication of known index SNP associations in T2D was attempted. Risk scores were computed as the sum of index risk alleles. SNPs in regions ±100 kb around each index were tested for associations with T2D in conditional fine-mapping analysis. Results: Of 69 index SNPs, 20 were genotyped directly and genotypes at 35 others were well imputed. Among the 55 SNPs with data, disease associations were replicated (at p<0.05) for 15 SNPs, while 32 more were directionally consistent with previous reports. Risk score was a significant predictor with a 2.03 fold higher risk CI (1.69-2.44) of T2D comparing the highest to lowest quintile of risk allele burden (p = 5.72×10-14). Two improved SNPs around index rs10923931 and 5 new candidate SNPs around indices rs10965250 and rs1111875 passed simple Bonferroni corrections for significance in conditional analysis. Nonetheless, only a small fraction (2.3% on the disease liability scale) of T2D burden in Singapore is explained by these SNPs. Conclusions: While diabetes risk in Singapore Chinese involves genetic variants, most disease risk remains unexplained. Further genetic work is ongoing in the Singapore Chinese population to identify unique common variants not already seen in earlier studies. However rapid increases in T2D risk have occurred in recent decades in this population, indicating that dynamic environmental influences and possibly gene by environment interactions complicate the genetic architecture of this disease. © 2014 Chen et al
Association between biliary complications and technique of hilar division (extrahepatic vs. intrahepatic) in major liver resections
BACKGROUND: Division of major vascular and biliary structures during major hepatectomies can be carried out either extrahepatically at the porta hepatic or intrahepatically during the parenchymal transection. In this retrospective study we test the hypothesis that the intrahepatic technique is associated with less early biliary complications. METHODS: 150 patients who underwent major hepatectomies were retrospectively allocated into an intrahepatic group (n = 100) and an extrahepatic group (n = 50) based on the technique of hilar division. The two groups were operated by two different surgical teams, each one favoring one of the two approaches for hilar dissection. Operative data (warm ischemic time, operative time, blood loss), biliary complications, morbidity and mortality rates were analyzed. RESULTS: In extrahepatic patients, operative time was longer (245 ± 50 vs 214 ± 38 min, p < 0.05) while the overall complication rate (55% vs 52%), hospital stay (13 ± 7 vs 12 ± 4 days), bile leak rate (22% vs 20%) and mortality (2% vs 2%) were similar compared to intrahepatic patients. However, most (57%) bile leaks in extrahepatic patients were grade II (leaks that required non-operative interventional treatment, while most (70%) leaks in the intrahepatic group were grade I (leaks that resolved and presented two injuries (4%) of the remaining bile ducts (p < 0.05). CONCLUSION: Intrahepatic hilar division is as safe as extrahepatic hilar division in terms of intraoperative blood requirements, morbidity and mortality. The extrahepatic technique is associated with more severe bile leaks and biliary injuries
Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma
We have previously demonstrated in an in vitro study that Snail increased the invasion activity of hepatoma cells by upregulating matrix metalloproteinase (MMP) gene expression. In the present study, we examined whether Snail gene expression correlates with cancer invasion and prognosis of patients with hepatocellular carcinoma (HCC). Quantitative reverse transcription–polymerase chain reaction (RT–PCR) was performed to evaluate Snail, E-cadherin, and MMP mRNA expressions in eight nodule-in-nodule tumours and 47 ordinary HCC tissues. In the nodule-in-nodule tumours, Snail expression significantly increased with tumour dedifferentiation (P=0.047). In the ordinary HCC tissues, Snail expression was significantly correlated with portal vein invasion (P=0.035) and intrahepatic metastasis (P=0.050); it also showed a significant correlation with MT1-MMP expression (r=0.572, P<0.001). In recurrence-free survival, the group with high Snail expression showed significantly poorer prognosis (P=0.035). Moreover, high Snail expression was an independent risk factor for early recurrence after curative resection. During the progression of HCC, Snail expression may be induced and accelerate invasion activity by upregulating MMP expression, resulting in portal invasion, intrahepatic metastasis, and poor prognosis
ATP Changes the Fluorescence Lifetime of Cyan Fluorescent Protein via an Interaction with His148
Recently, we described that ATP induces changes in YFP/CFP fluorescence intensities of Fluorescence Resonance Energy Transfer (FRET) sensors based on CFP-YFP. To get insight into this phenomenon, we employed fluorescence lifetime spectroscopy to analyze the influence of ATP on these fluorescent proteins in more detail. Using different donor and acceptor pairs we found that ATP only affected the CFP-YFP based versions. Subsequent analysis of purified monomers of the used proteins showed that ATP has a direct effect on the fluorescence lifetime properties of CFP. Since the fluorescence lifetime analysis of CFP is rather complicated by the existence of different lifetimes, we tested a variant of CFP, i.e. Cerulean, as a monomer and in our FRET constructs. Surprisingly, this CFP variant shows no ATP concentration dependent changes in the fluorescence lifetime. The most important difference between CFP and Cerulean is a histidine residue at position 148. Indeed, changing this histidine in CFP into an aspartic acid results in identical fluorescence properties as observed for the Cerulean fluorescent based FRET sensor. We therefore conclude that the changes in fluorescence lifetime of CFP are affected specifically by possible electrostatic interactions of the negative charge of ATP with the positively charged histidine at position 148. Clearly, further physicochemical characterization is needed to explain the sensitivity of CFP fluorescence properties to changes in environmental (i.e. ATP concentrations) conditions
Total Intermittent Pringle Maneuver during Liver Resection Can Induce Intestinal Epithelial Cell Damage and Endotoxemia
Contains fulltext :
110009.pdf (publisher's version ) (Open Access)OBJECTIVES: The intermittent Pringle maneuver (IPM) is frequently applied to minimize blood loss during liver transection. Clamping the hepatoduodenal ligament blocks the hepatic inflow, which leads to a non circulating (hepato)splanchnic outflow. Also, IPM blocks the mesenteric venous drainage (as well as the splenic drainage) with raising pressure in the microvascular network of the intestinal structures. It is unknown whether the IPM is harmful to the gut. The aim was to investigate intestinal epithelial cell damage reflected by circulating intestinal fatty acid binding protein levels (I-FABP) in patients undergoing liver resection with IPM. METHODS: Patients who underwent liver surgery received total IPM (total-IPM) or selective IPM (sel-IPM). A selective IPM was performed by selectively clamping the right portal pedicle. Patients without IPM served as controls (no-IPM). Arterial blood samples were taken immediately after incision, ischemia and reperfusion of the liver, transection, 8 hours after start of surgery and on the first post-operative day. RESULTS: 24 patients (13 males) were included. 7 patients received cycles of 15 minutes and 5 patients received cycles of 30 minutes of hepatic inflow occlusion. 6 patients received cycles of 15 minutes selective hepatic occlusion and 6 patients underwent surgery without inflow occlusion. Application of total-IPM resulted in a significant increase in I-FABP 8 hours after start of surgery compared to baseline (p<0.005). In the no-IPM group and sel-IPM group no significant increase in I-FABP at any time point compared to baseline was observed. CONCLUSION: Total-IPM in patients undergoing liver resection is associated with a substantial increase in arterial I-FABP, pointing to intestinal epithelial injury during liver surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT01099475
Azithromycin reduces spontaneous and induced inflammation in ΔF508 cystic fibrosis mice
BACKGROUND: Inflammation plays a critical role in lung disease development and progression in cystic fibrosis. Azithromycin is used for the treatment of cystic fibrosis lung disease, although its mechanisms of action are poorly understood. We tested the hypothesis that azithromycin modulates lung inflammation in cystic fibrosis mice. METHODS: We monitored cellular and molecular inflammatory markers in lungs of cystic fibrosis mutant mice homozygous for the ΔF508 mutation and their littermate controls, either in baseline conditions or after induction of acute inflammation by intratracheal instillation of lipopolysaccharide from Pseudomonas aeruginosa, which would be independent of interactions of bacteria with epithelial cells. The effect of azithromycin pretreatment (10 mg/kg/day) given by oral administration for 4 weeks was evaluated. RESULTS: In naive cystic fibrosis mice, a spontaneous lung inflammation was observed, characterized by macrophage and neutrophil infiltration, and increased intra-luminal content of the pro-inflammatory cytokine macrophage inflammatory protein-2. After induced inflammation, cystic fibrosis mice combined exaggerated cellular infiltration and lower anti-inflammatory interleukin-10 production. In cystic fibrosis mice, azithromycin attenuated cellular infiltration in both baseline and induced inflammatory condition, and inhibited cytokine (tumor necrosis factor-α and macrophage inflammatory protein-2) release in lipopolysaccharide-induced inflammation. CONCLUSION: Our findings further support the concept that inflammatory responses are upregulated in cystic fibrosis. Azithromycin reduces some lung inflammation outcome measures in cystic fibrosis mice. We postulate that some of the benefits of azithromycin treatment in cystic fibrosis patients are due to modulation of lung inflammation
Direct Identification of the Meloidogyne incognita Secretome Reveals Proteins with Host Cell Reprogramming Potential
The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin) that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins). Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth). Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi), suggesting a common parasitic behavior and a possible conservation of function between metazoan parasites of plants and animals
Novel iodinated tracers, MIBG and BMIPP, for nuclear cardiology
With the rapid growth of molecular biology, in vivo imaging of such molecular process (i.e., molecular imaging) has been well developed. The molecular imaging has been focused on justifying advanced treatments and for assessing the treatment effects. Most of molecular imaging has been developed using PET camera and suitable PET radiopharmaceuticals. However, this technique cannot be widely available and we need alternative approach. 123I-labeled compounds have been also suitable for molecular imaging using single-photon computed tomography (SPECT) 123I-labeled meta-iodobenzylguanidine (MIBG) has been used for assessing severity of heart failure and prognosis. In addition, it has a potential role to predict fatal arrhythmia, particularly for those who had and are planned to receive implantable cardioverter-defibrillator treatment. 123I-beta-methyl-iodophenylpentadecanoic acid (BMIPP) plays an important role for identifying ischemia at rest, based on the unique capability to represent persistent metabolic alteration after recovery of ischemia, so called ischemic memory. Since BMIPP abnormalities may represent severe ischemia or jeopardized myocardium, it may permit risk analysis in CAD patients, particularly for those with chronic kidney disease and/or hemodialysis patients. This review will discuss about recent development of these important iodinated compounds
Noninvasive diagnosis of chemotherapy induced liver injury by LiMAx test – two case reports and a review of the literature
- …
