14,655 research outputs found
Predicting FVIII Activity in Patients Who Use Recombinant FVIII Fc Fusion Protein for Prophylaxis and Treatment of Bleeding Episodes
Recommended from our members
Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V
LiCoO2 is a dominant cathode material for lithium-ion (Li-ion) batteries due to its high volumetric energy density, which could potentially be further improved by charging to high voltages. However, practical adoption of high-voltage charging is hindered by LiCoO2’s structural instability at the deeply delithiated state and the associated safety concerns. Here, we achieve stable cycling of LiCoO2 at 4.6 V (versus Li/Li+) through trace Ti–Mg–Al co-doping. Using state-of-the-art synchrotron X-ray imaging and spectroscopic techniques, we report the incorporation of Mg and Al into the LiCoO2 lattice, which inhibits the undesired phase transition at voltages above 4.5 V. We also show that, even in trace amounts, Ti segregates significantly at grain boundaries and on the surface, modifying the microstructure of the particles while stabilizing the surface oxygen at high voltages. These dopants contribute through different mechanisms and synergistically promote the cycle stability of LiCoO2 at 4.6 V
Sparse Randomized Kaczmarz for Support Recovery of Jointly Sparse Corrupted Multiple Measurement Vectors
While single measurement vector (SMV) models have been widely studied in
signal processing, there is a surging interest in addressing the multiple
measurement vectors (MMV) problem. In the MMV setting, more than one
measurement vector is available and the multiple signals to be recovered share
some commonalities such as a common support. Applications in which MMV is a
naturally occurring phenomenon include online streaming, medical imaging, and
video recovery. This work presents a stochastic iterative algorithm for the
support recovery of jointly sparse corrupted MMV. We present a variant of the
Sparse Randomized Kaczmarz algorithm for corrupted MMV and compare our proposed
method with an existing Kaczmarz type algorithm for MMV problems. We also
showcase the usefulness of our approach in the online (streaming) setting and
provide empirical evidence that suggests the robustness of the proposed method
to the distribution of the corruption and the number of corruptions occurring.Comment: 13 pages, 6 figure
An implementation of synthetic generation of wind data series
Wind power fluctuation is a major concern of large scale wind power grid integration. To test methods proposed for wind power grid integration, a large amount of wind data with time series are necessary and will be helpful to improve the methods. Meanwhile, due to the short operation history of most wind farms as well as limitations of data collections, the data obtained from wind farms could not satisfy the needs of data analysis. Consequently, synthetic generation of wind data series could be one of the effective solutions for this issue. In this paper, a method is presented for generating wind data series using Markov chain. Due to the high order Markov chain, the possibility matrix designed for a wind farm could cost a lot of memory, which is a problem with current computer technologies. Dynamic list will be introduced in this paper to reduce the memory required. Communication errors are un-avoidable on long way signal transmission between the control centre and wind farms. Missing of data always happens in the historical wind data series. Using these data to generate wind data series may result in some mistakes when searching related elements in the probability matrix. An adaptive method will be applied in this paper to solve the problem. The proposed method will be verified using a set of one-year historical data. The results show that the method could generate wind data series in an effective way. © 2013 IEEE.published_or_final_versio
Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites
High performance nanocomposites require well dispersion and high alignment of
the nanometer-sized components, at a high mass or volume fraction as well.
However, the road towards such composite structure is severely hindered due to
the easy aggregation of these nanometer-sized components. Here we demonstrate a
big step to approach the ideal composite structure for carbon nanotube (CNT)
where all the CNTs were highly packed, aligned, and unaggregated, with the
impregnated polymers acting as interfacial adhesions and mortars to build up
the composite structure. The strategy was based on a bio-inspired aggregation
control to limit the CNT aggregation to be sub 20--50 nm, a dimension
determined by the CNT growth. After being stretched with full structural
relaxation in a multi-step way, the CNT/polymer (bismaleimide) composite
yielded super-high tensile strengths up to 6.27--6.94 GPa, more than 100%
higher than those of carbon fiber/epoxy composites, and toughnesses up to
117--192 MPa. We anticipate that the present study can be generalized for
developing multifunctional and smart nanocomposites where all the surfaces of
nanometer-sized components can take part in shear transfer of mechanical,
thermal, and electrical signals
MOBILE and the provision of total joint replacement
Modern joint replacements have been available for 45 years, but we still do not have clear indications for these interventions, and we do not know how to optimize the outcome for patients who agree to have them done. The MOBILE programme has been investigating these issues in relation to primary total hip and knee joint replacements, using mixed methods research
Wide-Range Tunable Dynamic Property of Carbon Nanotube-Based Fibers
Carbon nanotube (CNT) fiber is formed by assembling millions of individual
tubes. The assembly feature provides the fiber with rich interface structures
and thus various ways of energy dissipation, as reflected by the non-zero loss
tangent (>0.028--0.045) at low vibration frequencies. A fiber containing
entangled CNTs possesses higher loss tangents than a fiber spun from aligned
CNTs. Liquid densification and polymer infiltration, the two common ways to
increase the interfacial friction and thus the fiber's tensile strength and
modulus, are found to efficiently reduce the damping coefficient. This is
because the sliding tendency between CNT bundles can also be well suppressed by
the high packing density and the formation of covalent polymer cross-links
within the fiber. The CNT/bismaleimide composite fiber exhibited the smallest
loss tangent, nearly as the same as that of carbon fibers. At a higher level of
the assembly structure, namely a multi-ply CNT yarn, the inter-fiber friction
and sliding tendency obviously influence the yarn's damping performance, and
the loss tangent can be tuned within a wide range, as similar to carbon fibers,
nylon yarns, or cotton yarns. The wide-range tunable dynamic properties allow
new applications ranging from high quality factor materials to dissipative
systems
Directional emission of light from a nano-optical Yagi-Uda antenna
The plasmon resonance of metal nanoparticles can enhance and direct light
from optical emitters in much the same way that radio frequency (RF) antennas
enhance and direct the emission from electrical circuits. In the RF regime, a
typical antenna design for high directivity is the Yagi-Uda antenna, which
basically consists of a one-dimensional array of antenna elements driven by a
single feed element. Here, we present the experimental demonstration of
directional light emission from a nano-optical Yagi-Uda antenna composed of an
array of appropriately tuned gold nanorods. Our results indicate that
nano-optical antenna arrays are a simple but efficient tool for the spatial
control of light emission.Comment: 4 pages, including 4 figure
Discovery of the progenitor of the type Ia supernova 2007on
Type Ia supernovae are exploding stars that are used to measure the
accelerated expansion of the Universe and are responsible for most of the iron
ever produced. Although there is general agreement that the exploding star is a
white dwarf in a binary system, the exact configuration and trigger of the
explosion is unclear, which could hamper their use for precision cosmology. Two
families of progenitor models have been proposed. In the first, a white dwarf
accretes material from a companion until it exceeds the Chandrasekhar mass,
collapses and explodes. Alternatively, two white dwarfs merge, again causing
catastrophic collapse and an explosion. It has hitherto been impossible to
determine if either model is correct. Here we report the discovery of an object
in pre-supernova archival X-ray images at the position of the recent type Ia
supernova (2007on) in the elliptical galaxy NGC 1404. Deep optical images (also
archival) show no sign of this object. From this we conclude that the X-ray
source is the progenitor of the supernova, which favours the accretion model
for this supernova, although the host galaxy is older (6-9 Gyr) than the age at
which the explosions are predicted in the accreting models.Comment: Published in Nature See also the two follow-up papers: Roelofs,
Bassa, Voss, Nelemans Nelemans, Voss, Roelofs, Bassa both on astro-ph
02/15/0
- …
