2,508 research outputs found
Drivers for change in primary care of diabetes following a protected learning time educational event: interview study of practitioners
Background: A number of protected learning time schemes have been set up in primary care across the United Kingdom but there has been little published evidence of their impact on processes of care. We undertook a qualitative study to investigate the perceptions of practitioners
involved in a specific educational intervention in diabetes as part of a protected learning time scheme for primary health care teams, relating to changing processes of diabetes care in general practice.
Methods: We undertook semistructured interviews of key informants from a sample of practices stratified according to the extent they had changed behaviour in prescribing of ramipril and diabetes care more generally, following a specific educational intervention in Lincolnshire, United Kingdom. Interviews sought information on facilitators and barriers to change in organisational behaviour for
the care of diabetes.
Results: An interprofessional protected learning time scheme event was perceived by some but not all participants as bringing about changes in processes for diabetes care. Participants cited examples of change introduced partly as a result of the educational session. This included using ACE
inhibitors as first line for patients with diabetes who developed hypertension, increased use of aspirin, switching patients to glitazones, and conversion to insulin either directly or by referral to secondary care. Other reported factors for change, unrelated to the educational intervention, included financially driven performance targets, research evidence and national guidance. Facilitators for change linked to the educational session were peer support and teamworking supported by audit and comparative feedback.
Conclusion: This study has shown how a protected learning time scheme, using interprofessional learning, local opinion leaders and early implementers as change agents may have influenced changes in systems of diabetes care in selected practices but also how other confounding factors
played an important part in changes that occurred in practice
Best evidence rehabilitation for chronic pain, part 3 : low back pain
Chronic Low Back Pain (CLBP) is a major and highly prevalent health problem. Given the high number of papers available, clinicians might be overwhelmed by the evidence on CLBP management. Taking into account the scale and costs of CLBP, it is imperative that healthcare professionals have access to up-to-date, evidence-based information to assist them in treatment decision-making. Therefore, this paper provides a state-of-the-art overview of the best evidence non-invasive rehabilitation for CLBP. Taking together up-to-date evidence from systematic reviews, meta-analysis and available treatment guidelines, most physically inactive therapies should not be considered for CLBP management, except for pain neuroscience education and spinal manipulative therapy if combined with exercise therapy, with or without psychological therapy. Regarding active therapy, back schools, sensory discrimination training, proprioceptive exercises, and sling exercises should not be considered due to low-quality and/or conflicting evidence. Exercise interventions on the other hand are recommended, but while all exercise modalities appear effective compared to minimal/passive/conservative/no intervention, there is no evidence that some specific types of exercises are superior to others. Therefore, we recommend choosing exercises in line with the patient's preferences and abilities. When exercise interventions are combined with a psychological component, effects are better and maintain longer over time
The nutrition and food-related roles, experiences and support needs of female family carers of malnourished older rehabilitation patients
Simulated Microgravity Regulates Gene Transcript Profiles of 2T3 Preosteoblasts: Comparison of the Random Positioning Machine and the Rotating Wall Vessel Bioreactor
Microgravity of spaceflight induces bone loss due in part to decreased bone formation by osteoblasts. We have previously examined the microgravity-induced changes in gene expression profiles in 2T3 preosteoblasts using the Random Positioning Machine (RPM) to simulate microgravity conditions. Here, we hypothesized that exposure of preosteoblasts to an independent microgravity simulator, the Rotating Wall Vessel (RWV), induces similar changes in differentiation and gene transcript profiles, resulting in a more confined list of gravi-sensitive genes that may play a role in bone formation. In comparison to static 1g controls, exposure of 2T3 cells to RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 genes and upregulated 45 genes by more than two-fold as shown by microarray analysis. The microarray results were confirmed with real time PCR for downregulated genes osteomodulin, bone morphogenic protein 4 (BMP4), runx2, and parathyroid hormone receptor 1. Western blot analysis validated the expression of three downregulated genes, BMP4, peroxiredoxin IV, and osteoglycin, and one upregulated gene peroxiredoxin I. Comparison of the microarrays from the RPM and the RWV studies identified 14 gravi-sensitive genes that changed in the same direction in both systems. Further comparison of our results to a published database showing gene transcript profiles of mechanically loaded mouse tibiae revealed 16 genes upregulated by the loading that were shown to be downregulated by RWV and RPM. These mechanosensitive genes identified by the comparative studies may provide novel insights into understanding the mechanisms regulating bone formation and potential targets of countermeasure against decreased bone formation both in astronauts and in general patients with musculoskeletal disorders
Intentional replantation for the management of maxillary sinusitis
Aim. To present a case that emphasizes the importance of the use of intentional replantation as a technique to successfully treat a periapical lesion and an odontogenic maxillary sinusitis through the alveolus at the same time. Summary. This case report presents a patient with odontogenic maxillary sinusitis secondary to periapical disease of a maxillary molar that had previously received root canal treatment. The molar was extracted, with drainage and rinsing of the maxillary sinus. The apices were resected extra-orally, and the retrograde cavity was prepared with ultrasound and retrograde filling using silver amalgam. The tooth was then replanted. After 2 years, the patient was asymptomatic, periapical radiography showed no evidence of root resorption and computed tomography scanning demonstrated the resolution of maxillary sinusitis
Minocycline as a re-purposed anti-Wolbachia macrofilaricide: superiority compared with doxycycline regimens in a murine infection model of human lymphatic filariasis
Lymphatic filariasis and onchocerciasis are parasitic helminth diseases, which cause severe morbidities such as elephantiasis, skin disease and blindness, presenting a major public health burden in endemic communities. The anti-Wolbachia consortium (A·WOL: http://www.a-wol.com/) has identified a number of registered antibiotics that target the endosymbiotic bacterium, Wolbachia, delivering macrofilaricidal activity. Here we use pharmacokinetics/pharmacodynamics (PK/PD) analysis to rationally develop an anti-Wolbachia chemotherapy by linking drug exposure to pharmacological effect. We compare the pharmacokinetics and anti-Wolbachia efficacy in a murine Brugia malayi model of minocycline versus doxycycline. Doxycycline exhibits superior PK in comparison to minocycline resulting in a 3-fold greater exposure in SCID mice. Monte-Carlo simulations confirmed that a bi-daily 25–40 mg/Kg regimen is bioequivalent to a clinically effective 100–200 mg/day dose for these tetracyclines. Pharmacodynamic studies showed that minocycline depletes Wolbachia more effectively than doxycycline (99.51% vs. 90.35%) after 28 day 25 mg/Kg bid regimens with a more potent block in microfilarial production. PK/PD analysis predicts that minocycline would be expected to be 1.7 fold more effective than doxycycline in man despite lower exposure in our infection models. Our findings warrant onward clinical investigations to examine the clinical efficacy of minocycline treatment regimens against lymphatic filariasis and onchocerciasis
Oscillatory surface rheotaxis of swimming E. coli bacteria
Bacterial contamination of biological conducts, catheters or water resources
is a major threat to public health and can be amplified by the ability of
bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation
with respect to flow gradients, often in complex and confined environments, are
still poorly understood. Here, we follow individual E. coli bacteria swimming
at surfaces under shear flow with two complementary experimental assays, based
on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a
theoretical model for their rheotactic motion. Three transitions are identified
with increasing shear rate: Above a first critical shear rate, bacteria shift
to swimming upstream. After a second threshold, we report the discovery of an
oscillatory rheotaxis. Beyond a third transition, we further observe
coexistence of rheotaxis along the positive and negative vorticity directions.
A full theoretical analysis explains these regimes and predicts the
corresponding critical shear rates. The predicted transitions as well as the
oscillation dynamics are in good agreement with experimental observations. Our
results shed new light on bacterial transport and reveal new strategies for
contamination prevention.Comment: 12 pages, 5 figure
- …
