21,041 research outputs found
Precise asymptotic approximations for the kernels corresponding to the L\'evy processes
Using complex analysis techniques we obtain precise asymptotic approximations
for the kernels corresponding to the symmetric -stable processes and
their fractional derivatives. We apply our method to general L\'evy processes
whose characteristic functions are radial and satisfy some regularity and size
conditions.Comment: 20 page
Numerical Sensitivity Tests of Volatile Organic Compounds Emission to PM2.5 Formation during Heat Wave Period in 2018 in Two Southeast Korean Cities
A record-breaking severe heat wave was recorded in southeast Korea from 11 July to 15 August 2018, and the numerical sensitivity simulations of volatile organic compound (VOC) to secondarily generated particulate matter with diameter of less than 2.5 mu m (PM2.5) concentrations were studied in the Busan and Ulsan metropolitan areas in southeast Korea. A weather research and forecasting (WRF) model coupled with chemistry (WRF-Chem) was employed, and we carried out VOC emission sensitivity simulations to investigate variations in PM2.5 concentrations during the heat wave period that occurred from 11 July to 15 August 2018. In our study, when anthropogenic VOC emissions from the Comprehensive Regional Emissions Inventory for Atmospheric Transport Experiment-2015 (CREATE-2015) inventory were increased by approximately a factor of five in southeast Korea, a better agreement with observations of PM2.5 mass concentrations was simulated, implying an underestimation of anthropogenic VOC emissions over southeast Korea. The simulated secondary organic aerosol (SOA) fraction, in particular, showed greater dominance during high temperature periods such as 19-21 July, 2018, with the SOA fractions of 42.3% (in Busan) and 34.3% (in Ulsan) among a sub-total of seven inorganic and organic components. This is considerably higher than observed annual mean organic carbon (OC) fraction (28.4 +/- 4%) among seven components, indicating the enhancement of secondary organic aerosols induced by photochemical reactions during the heat wave period in both metropolitan areas. The PM2.5 to PM10 ratios were 0.69 and 0.74, on average, during the study period in the two cities. These were also significantly higher than the typical range in those cities, which was 0.5-0.6 in 2018. Our simulations implied that extremely high temperatures with no precipitation are significantly important to the secondary generation of PM2.5 with higher secondary organic aerosol fraction via photochemical reactions in southeastern Korean cities. Other possible relationships between anthropogenic VOC emissions and temperature during the heat wave episode are also discussed in this study
Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors
We investigated domain nucleation process in epitaxial Pb(Zr,Ti)O3 capacitors
under a modified piezoresponse force microscope. We obtained domain evolution
images during polarization switching process and observed that domain
nucleation occurs at particular sites. This inhomogeneous nucleation process
should play an important role in an early stage of switching and under a high
electric field. We found that the number of nuclei is linearly proportional to
log(switching time), suggesting a broad distribution of activation energies for
nucleation. The nucleation sites for a positive bias differ from those for a
negative bias, indicating that most nucleation sites are located at
ferroelectric/electrode interfaces
Dimerization-Induced Fermi-Surface Reconstruction in IrTe2
We report a de Haas-van Alphen (dHvA) oscillation study on IrTe2 single crystals showing complex dimer formations. By comparing the angle dependence of dHvA oscillations with band structure calculations, we show distinct Fermi surface reconstruction induced by a 1/5-type and a 1/8-type dimerizations. This verifies that an intriguing quasi-two-dimensional conducting plane across the layers is induced by dimerization in both cases. A phase transition to the 1/8 phase with higher dimer density reveals that local instabilities associated with intra-and interdimer couplings are the main driving force for complex dimer formations in IrTe2.X11149sciescopu
The K giant stars from the LAMOST survey data I: identification, metallicity, and distance
We present a support vector machine classifier to identify the K giant stars
from the LAMOST survey directly using their spectral line features. The
completeness of the identification is about 75% for tests based on LAMOST
stellar parameters. The contamination in the identified K giant sample is lower
than 2.5%. Applying the classification method to about 2 million LAMOST spectra
observed during the pilot survey and the first year survey, we select 298,036 K
giant candidates. The metallicities of the sample are also estimated with
uncertainty of \,dex based on the equivalent widths of Mg and iron lines. A Bayesian method is then developed to estimate the
posterior probability of the distance for the K giant stars, based on the
estimated metallicity and 2MASS photometry. The synthetic isochrone-based
distance estimates have been calibrated using 7 globular clusters with a wide
range of metallicities. The uncertainty of the estimated distance modulus at
\,mag, which is the median brightness of the K giant sample, is about
0.6\,mag, corresponding to % in distance. As a scientific verification
case, the trailing arm of the Sagittarius stream is clearly identified with the
selected K giant sample. Moreover, at about 80\,kpc from the Sun, we use our K
giant stars to confirm a detection of stream members near the apo-center of the
trailing tail. These rediscoveries of the features of the Sagittarius stream
illustrate the potential of the LAMOST survey for detecting substructures in
the halo of the Milky Way.Comment: 24 pages, 20 figures, submitted to Ap
- …
