637 research outputs found
Amorphous Boron containing silicon carbo-nitrides created by ion sputtering
Silicon carbo-nitride films with Boron were deposited onto Silicon, glass and SS304 Stainless Steel substrates using the ion beam assisted deposition (IBAD) method. The coating composition, rate of ion-assistance and substrate temperature were varied. Films were examined by X-Ray Diffraction, Scanning Electron microscopy, Energy Dispersive X-Ray analysis, Cathodoluminescence, Atomic Force Microscopy and Nano-indentation. The composition and chemical bonding variation was found to be dependent on deposition conditions. All coatings were amorphous, fully dense and showed high hardness up to 33 GPa. It is suggested that the low friction coefficient of about 0.3, measured against Al2O3 using the pin-on-disc method, may be the result of the presence of C nanoclusters which are formed under the low energy deposition conditions. Films deposited on Stainless Steel had an onset of rapid thermal oxidation at 1150 °C in air as determined by thermogravimetric analysis. The films have a Tauc bandgap between 2.2 and 2.8 eV and were also exceptionally high electrical resistive which may indicate the presence of localised state
Rhizosphere bacterial diversity and heavy metal accumulation in Nymphaea pubescens in aid of phytoremediation potential
The present work aims to characterize the bacterial diversity of the rhizosphere system of Nymphaea pubescens and the sediment system where it grows naturally. Heavy metal content in the sediment and Nymphea plant from the selected wetland system were also studied. Results of the current study showed that the concentration of copper, zinc and lead in the sediment ranged from 43 to 182 mg/Kg, from 331 to 1382 mg/Kg and from 121 to 1253 mg/Kg, respectively. Cadmium concentration in sediment samples was found to be zero and the order of abundance of heavy metals in the sediment samples was Zn>Pb>Cu>Cd. The abundance patterns of heavy metals in leaf, petiole and root were Cd>Cu>Pb>Zn. Microbial load in rhizosphere of Nymphea pubescens ranged from 93×102 to 69×103 and that of sediment was 62×102 to 125×103. Bacterial load in rhizosphere was higher than that of growing sediment. Four bacterial genera were identified from the rhizosphere of Nymphaea pubescens which include Acinetobacter, Alcaligens, Listeria and Staphylococcus. Acinetobacter, Alcaligens and Listeria are the three bacterial genera isolated from sediment samples. Copper resistance studies of the 14 bacterial isolates from rhizosphere and 7 strains from sediment samples revealed that most of them showed low resistance (<100 μg/ml) and very few isolates showed high resistance of 400-500 μg/ml
Supersymmetry Without Prejudice at the LHC
The discovery and exploration of Supersymmetry in a model-independent fashion
will be a daunting task due to the large number of soft-breaking parameters in
the MSSM. In this paper, we explore the capability of the ATLAS detector at the
LHC ( TeV, 1 fb) to find SUSY within the 19-dimensional
pMSSM subspace of the MSSM using their standard transverse missing energy and
long-lived particle searches that were essentially designed for mSUGRA. To this
end, we employ a set of k previously generated model points in the
19-dimensional parameter space that satisfy all of the existing experimental
and theoretical constraints. Employing ATLAS-generated SM backgrounds and
following their approach in each of 11 missing energy analyses as closely as
possible, we explore all of these k model points for a possible SUSY
signal. To test our analysis procedure, we first verify that we faithfully
reproduce the published ATLAS results for the signal distributions for their
benchmark mSUGRA model points. We then show that, requiring all sparticle
masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points
are discovered with a significance in at least one of these 11 analyses
assuming a 50\% systematic error on the SM background. If this systematic error
can be reduced to only 20\% then this parameter space coverage is increased.
These results are indicative that the ATLAS SUSY search strategy is robust
under a broad class of Supersymmetric models. We then explore in detail the
properties of the kinematically accessible model points which remain
unobservable by these search analyses in order to ascertain problematic cases
which may arise in general SUSY searches.Comment: 69 pages, 40 figures, Discussion adde
Do solar neutrinos decay?
Despite the fact that the solar neutrino flux is now well-understood in the
context of matter-affected neutrino mixing, we find that it is not yet possible
to set a strong and model-independent bound on solar neutrino decays. If
neutrinos decay into truly invisible particles, the Earth-Sun baseline defines
a lifetime limit of \tau/m \agt 10^{-4} s/eV. However, there are many
possibilities which must be excluded before such a bound can be established.
There is an obvious degeneracy between the neutrino lifetime and the mixing
parameters. More generally, one must also allow the possibility of active
daughter neutrinos and/or antineutrinos, which may partially conceal the
characteristic features of decay. Many of the most exotic possibilities that
presently complicate the extraction of a decay bound will be removed if the
KamLAND reactor antineutrino experiment confirms the large-mixing angle
solution to the solar neutrino problem and measures the mixing parameters
precisely. Better experimental and theoretical constraints on the B
neutrino flux will also play a key role, as will tighter bounds on absolute
neutrino masses. Though the lifetime limit set by the solar flux is weak, it is
still the strongest direct limit on non-radiative neutrino decay. Even so,
there is no guarantee (by about eight orders of magnitude) that neutrinos from
astrophysical sources such as a Galactic supernova or distant Active Galactic
Nuclei will not decay.Comment: Very minor corrections, corresponds to published versio
Energy, interaction, and photoluminescence of spin-reversed quasielectrons in fractional quantum Hall systems
The energy and photoluminescence spectra of a two-dimensional electron gas in
the fractional quantum Hall regime are studied. The single-particle properties
of reversed-spin quasielectrons (QE's) as well as the
pseudopotentials of their interaction with one another and with Laughlin
quasielectrons (QE's) and quasiholes (QH's) are calculated. Based on the
short-range character of the QE--QE and QE--QE
repulsion, the partially unpolarized incompressible states at the filling
factors and are postulated within Haldane's
hierarchy scheme. To describe photoluminescence, the family of bound
QE states of a valence hole and QE's are
predicted in analogy to the found earlier fractionally charged excitons
QE. The binding energy and optical selection rules for both families are
compared. The QE is found radiative in contrast to the dark QE,
and the QE is found non-radiative in contrast to the bright
QE.Comment: 9 pages, 6 figure
Transformative learning in a context of deep division: The importance of learning about self for leadership
Leadership training at institutions of higher learning typically foreground theories of leadership, predominantly as taught content. These programmes, however, are not premised on a context of deep division, inequality and hurt. Understanding this context is crucial for leading change in post-apartheid South Africa. The UP GIBS Nexus Leadership Programme uses an innovative and transformative pedagogy for leadership training. This represents an alternative paradigm because the programme prioritises learning about oneself and one’s beliefs over a taught curriculum. This leadership programme was specifically designed to equip leaders for the post-apartheid South African context. This article discusses findings from a qualitative study of the Nexus Leadership Programme which reveal profound learning at a personal level and an undoing of perspectives garnered from South Africa’s divided past. Data were collected from programme participants and programme managers, and reflections are explored via the lens of transformative learning theory. The themes generated from the data relate either to the nature of learning as experienced by the participants or to the need for unlearning prior meaning perspectives on race
What can we learn from neutrinoless double beta decay experiments?
We assess how well next generation neutrinoless double beta decay and normal
neutrino beta decay experiments can answer four fundamental questions. 1) If
neutrinoless double beta decay searches do not detect a signal, and if the
spectrum is known to be inverted hierarchy, can we conclude that neutrinos are
Dirac particles? 2) If neutrinoless double beta decay searches are negative and
a next generation ordinary beta decay experiment detects the neutrino mass
scale, can we conclude that neutrinos are Dirac particles? 3) If neutrinoless
double beta decay is observed with a large neutrino mass element, what is the
total mass in neutrinos? 4) If neutrinoless double beta decay is observed but
next generation beta decay searches for a neutrino mass only set a mass upper
limit, can we establish whether the mass hierarchy is normal or inverted? We
base our answers on the expected performance of next generation neutrinoless
double beta decay experiments and on simulations of the accuracy of
calculations of nuclear matrix elements.Comment: Added reference
Modulational instability in nonlocal nonlinear Kerr media
We study modulational instability (MI) of plane waves in nonlocal nonlinear
Kerr media. For a focusing nonlinearity we show that, although the nonlocality
tends to suppress MI, it can never remove it completely, irrespectively of the
particular profile of the nonlocal response function. For a defocusing
nonlinearity the stability properties depend sensitively on the response
function profile: for a smooth profile (e.g., a Gaussian) plane waves are
always stable, but MI may occur for a rectangular response. We also find that
the reduced model for a weak nonlocality predicts MI in defocusing media for
arbitrary response profiles, as long as the intensity exceeds a certain
critical value. However, it appears that this regime of MI is beyond the
validity of the reduced model, if it is to represent the weakly nonlocal limit
of a general nonlocal nonlinearity, as in optics and the theory of
Bose-Einstein condensates.Comment: 8 pages, submitted to Phys. Rev.
Whirl mappings on generalised annuli and the incompressible symmetric equilibria of the dirichlet energy
In this paper we show a striking contrast in the symmetries of equilibria and extremisers of the total elastic energy of a hyperelastic incompressible annulus subject to pure displacement boundary conditions.Indeed upon considering the equilibrium equations, here, the nonlinear second order elliptic system formulated for the deformation u=(u1,…,uN) :
EL[u,X]=⎧⎩⎨⎪⎪Δu=div(P(x)cof∇u)det∇u=1u≡φinX,inX,on∂X,
where X is a finite, open, symmetric N -annulus (with N≥2 ), P=P(x) is an unknown hydrostatic pressure field and φ is the identity mapping, we prove that, despite the inherent rotational symmetry in the system, when N=3 , the problem possesses no non-trivial symmetric equilibria whereas in sharp contrast, when N=2 , the problem possesses an infinite family of symmetric and topologically distinct equilibria. We extend and prove the counterparts of these results in higher dimensions by way of showing that a similar dichotomy persists between all odd vs. even dimensions N≥4 and discuss a number of closely related issues
- …
