4,043 research outputs found
Petroleum hydrocarbons in fresh waters: a preliminary desk study and bibliography
A literature survey was carried out into the effects of petroleum hydrocarbons in freshwater, from the toxicity, biodegradability and concentration aspects. It was supplemented by a selective search on hydrocarbons in the marine environment for comparison. The aim was to determine the major inputs of these hydrocarbons, their accumulation, effects and fate in freshwaters. The search was confined to the period 1965-1978. The bibliography contains 390 references, divided by subject
Living roots magnify the response of soil organic carbon decomposition to temperature in temperate grassland.
Increasing atmospheric carbon dioxide (CO2) concentration is both a strong driver of primary productivity and widely believed to be the principal cause of recent increases in global temperature. Soils are the largest store of the world's terrestrial C. Consequently, many investigations have attempted to mechanistically understand how microbial mineralisation of soil organic carbon (SOC) to CO2 will be affected by projected increases in temperature. Most have attempted this in the absence of plants as the flux of CO2 from root and rhizomicrobial respiration in intact plant-soil systems confounds interpretation of measurements. We compared the effect of a small increase in temperature on respiration from soils without recent plant C with the effect on intact grass swards. We found that for 48 weeks, before acclimation occurred, an experimental 3 °C increase in sward temperature gave rise to a 50% increase in below ground respiration (ca.0.4 kg C m−2; Q10=3.5), whereas mineralisation of older SOC without plants increased with a Q10 of only 1.7 when subject to increases in ambient soil temperature. Subsequent 14C dating of respired CO2 indicated that the presence of plants in swards more than doubled the effect of warming on the rate of mineralisation of SOC with an estimated mean C age of ca.8 y or older relative to incubated soils without recent plant inputs. These results not only illustrate the formidable complexity of mechanisms controlling C fluxes in soils, but also suggest that the dual biological and physical effects of CO2 on primary productivity and global temperature have the potential to synergistically increase the mineralisation of existing soil C
Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment
Globally, wetlands provide the largest terrestrial carbon (C) store, and restoration of degraded wetlands provides a potentially important mechanism for climate change mitigation. We examined the potential for restored saltmarshes to sequester carbon, and found that they can provide a modest, but sustained, sink for atmospheric CO2. Rates of C and nutrient cycling were measured and compared between a natural saltmarsh (high- and low-shore locations), claimed arable land on former high-shore saltmarsh and a managed realignment restoration site (high- and low-shore) in transition from agricultural land to saltmarsh 15 years after realignment, at Tollesbury, Essex, UK. We measured pools and turnover of C and nitrogen (N) in soil and vegetation at each site using a range of methods, including gas flux measurement and isotopic labelling. The natural high-shore site had the highest soil organic matter concentrations, topsoil C stock and below-ground biomass, whereas the agricultural site had the highest total extractable N concentration and lowest soil C/N ratio. Ecosystem respiration rates were similar across all three high-shore sites, but much higher in both low-shore sites, which receive regular inputs of organic matter and nutrients from the estuary. Total evolution of 14C-isotopically labelled substrate as CO2 was highest at the agricultural site, suggesting that low observed respiration rates here were due to low substrate supply (following a recent harvest) rather than to inherently low microbial activity. The results suggest that, after 15 years, the managed realignment site is not fully equivalent to the natural saltmarsh in terms of biological and chemical function. While above ground biomass, extractable N and substrate mineralisation rates in the high-shore site were all quite similar to the natural site, less dynamic ecosystem properties including soil C stock, C/N ratio and below-ground biomass all remained more similar to the agricultural site. These results suggest that reversion to natural biogeochemical functioning will occur following restoration, but is likely to be slow; we estimate that it will take approximately 100 years for the restored site to accumulate the amount of C currently stored in the natural site, at a rate of 0.92 t C ha−1 yr−1
The Magnificent Seven: Magnetic fields and surface temperature distributions
Presently seven nearby radio-quiet isolated neutron stars discovered in ROSAT
data and characterized by thermal X-ray spectra are known. They exhibit very
similar properties and despite intensive searches their number remained
constant since 2001 which led to their name ``The Magnificent Seven''. Five of
the stars exhibit pulsations in their X-ray flux with periods in the range of
3.4 s to 11.4 s. XMM-Newton observations revealed broad absorption lines in the
X-ray spectra which are interpreted as cyclotron resonance absorption lines by
protons or heavy ions and / or atomic transitions shifted to X-ray energies by
strong magnetic fields of the order of 10^13 G. New XMM-Newton observations
indicate more complex X-ray spectra with multiple absorption lines. Pulse-phase
spectroscopy of the best studied pulsars RX J0720.4-3125 and RBS 1223 reveals
variations in derived emission temperature and absorption line depth with pulse
phase. Moreover, RX J0720.4-3125 shows long-term spectral changes which are
interpreted as due to free precession of the neutron star. Modeling of the
pulse profiles of RX J0720.4-3125 and RBS 1223 provides information about the
surface temperature distribution of the neutron stars indicating hot polar caps
which have different temperatures, different sizes and are probably not located
in antipodal positions.Comment: 10 pages, 8 figures, to appear in Astrophysics and Space Science, in
the proceedings of "Isolated Neutron Stars: from the Interior to the
Surface", edited by D. Page, R. Turolla and S. Zan
Disks, Tori, and Cocoons: Emission and Absorption Diagnostics of AGN Environments
One of the most important problems in the study of active galaxies is
understanding the detailed geometry, physics, and evolution of the central
engines and their environments. The leading models involve an accretion disk
and torus structure around a central dense object, thought to be a supermassive
black hole. Gas found in the environment of AGN is associated with different
structures: molecular accretion disks, larger scale atomic tori, ionized and
neutral "cocoons" in which the nuclear regions can be embedded. All of them can
be studied at radio wavelengths by various means. Here, we summarize the work
that has been done to date in the radio band to characterize these structures.
Much has been learned about the central few parsecs of AGN in the last few
decades with contemporary instruments but the picture remains incomplete. In
order to be able to define a more accurate model of this region, significant
advances in sensitivity, spectral and angular resolution, and bandpass
stability are required. The necessary advances will only be provided by the
Square Kilometer Array and we discuss the possibilities that these dramatic
improvements will open for the study of the gas in the central region of AGN.Comment: To appear in "Science with the Square Kilometer Array," eds. C.
Carilli and S. Rawlings, New Astronomy Reviews (Elsevier: Amsterdam); 17
pages, 7 figures (four of them in separate gif/tif files) The full paper with
high resolution images can be downloaded from
http://www.astron.nl/~morganti/Papers/AGNenvironment.ps.g
Thresholds of biodiversity and ecosystem function in a forest ecosystem undergoing dieback
Ecological thresholds, which represent points of rapid change in ecological properties, are of major scientific and societal concern. However, very little research has focused on empirically testing the occurrence of thresholds in temperate terrestrial ecosystems. To address this knowledge gap, we tested whether a number of biodiversity, ecosystem functions and ecosystem condition metrics exhibited thresholds in response to a gradient of forest dieback, measured as changes in basal area of living trees relative to areas that lacked recent dieback. The gradient of dieback was sampled using 12 replicate study areas in a temperate forest ecosystem. Our results provide novel evidence of several thresholds in biodiversity (namely species richness of ectomycorrhizal fungi, epiphytic lichen and ground flora); for ecological condition (e.g. sward height, palatable seedling abundance) and a single threshold
for ecosystem function (i.e. soil respiration rate). Mechanisms for these thresholds are explored. As climate-induced forest dieback is increasing worldwide, both in scale and speed, these results imply that threshold responses may become increasingly widespread
Enhancement of the Two-channel Kondo Effect in Single-Electron boxes
The charging of a quantum box, coupled to a lead by tunneling through a
single resonant level, is studied near the degeneracy points of the Coulomb
blockade. Combining Wilson's numerical renormalization-group method with
perturbative scaling approaches, the corresponding low-energy Hamiltonian is
solved for arbitrary temperatures, gate voltages, tunneling rates, and energies
of the impurity level. Similar to the case of a weak tunnel barrier, the shape
of the charge step is governed at low temperatures by the non-Fermi-liquid
fixed point of the two-channel Kondo effect. However, the associated Kondo
temperature TK is strongly modified. Most notably, TK is proportional to the
width of the level if the transmission through the impurity is close to unity
at the Fermi energy, and is no longer exponentially small in one over the
tunneling matrix element. Focusing on a particle-hole symmetric level, the
two-channel Kondo effect is found to be robust against the inclusion of an
on-site repulsion on the level. For a large on-site repulsion and a large
asymmetry in the tunneling rates to box and to the lead, there is a sequence of
Kondo effects: first the local magnetic moment that forms on the level
undergoes single-channel screening, followed by two-channel overscreening of
the charge fluctuations inside the box.Comment: 21 pages, 19 figure
Formation of Small-Scale Condensations in the Molecular Clouds via Thermal Instability
A systematic study of the linear thermal instability of a self-gravitating
magnetic molecular cloud is carried out for the case when the unperturbed
background is subject to local expansion or contraction. We consider the
ambipolar diffusion, or ion-neutral friction on the perturbed states. In this
way, we obtain a non-dimensional characteristic equation that reduces to the
prior characteristic equation in the non-gravitating stationary background. By
parametric manipulation of this characteristic equation, we conclude that there
are, not only oblate condensation forming solutions, but also prolate solutions
according to local expansion or contraction of the background. We obtain the
conditions for existence of the Field lengths that thermal instability in the
molecular clouds can occur. If these conditions establish, small-scale
condensations in the form of spherical, oblate, or prolate may be produced via
thermal instability.Comment: 16 page, accepted by Ap&S
Social and cultural origins of motivations to volunteer a comparison of university students in six countries
Although participation in volunteering and motivations to volunteer (MTV) have received substantial attention on the national level, particularly in the US, few studies have compared and explained these issues across cultural and political contexts. This study compares how two theoretical perspectives, social origins theory and signalling theory, explain variations in MTV across different countries. The study analyses responses from a sample of 5794 students from six countries representing distinct institutional contexts. The findings provide strong support for signalling theory but less so for social origins theory. The article concludes that volunteering is a personal decision and thus is influenced more at the individual level but is also impacted to some degree by macro-level societal forces
Lattice Dynamics and the High Pressure Equation of State of Au
Elastic constants and zone-boundary phonon frequencies of gold are calculated
by total energy electronic structure methods to twofold compression. A
generalized force constant model is used to interpolate throughout the
Brillouin zone and evaluate moments of the phonon distribution. The moments are
used to calculate the volume dependence of the Gruneisen parameter in the fcc
solid. Using these results with ultrasonic and shock data, we formulate the
complete free energy for solid Au. This free energy is given as a set of closed
form expressions, which are valid to compressions of at least V/V_0 = 0.65 and
temperatures up to melting. Beyond this density, the Hugoniot enters the
solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are
discussed within an approximate model. We compare with proposed standards for
the equation of state to pressures of ~200 GPa. Our result for the room
temperature isotherm is in very good agreement with an earlier standard of
Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev.
- …
