66,733 research outputs found

    A Relativistic Symmetry in Nuclei: Its origins and consequences

    Get PDF
    We review the status of quasi-degenerate doublets in nuclei, called pseudospin doublets, which were discovered about thirty years ago and the origins of which have remained a mystery, until recently. We show that pseudospin doublets originate from an SU(2) symmetry of the Dirac Hamiltonian which occurs when the sum of the scalar and vector potentials is a constant. Furthermore, we survey the evidence that pseudospin symmetry is approximately conserved in nuclear spectra and eigenfunctions and in nucleon-nucleus scattering for a Dirac Hamiltonian with realistic nuclear scalar and vector potentials.Comment: Invited Talk for "Nuclei and Nucleons", Darmstadt, Germany, Oct. 11-13,2000; International Symposium on the occasion of Achim Richter's 60th Birthda

    Childporn.GIF:  Establishing Liability for On-Line Service Providers

    Get PDF

    All-optical photochromic spatial light modulators based on photoinduced electron transfer in rigid matrices

    Get PDF
    A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions)

    An N-body Integrator for Gravitating Planetary Rings, and the Outer Edge of Saturn's B Ring

    Get PDF
    A new symplectic N-body integrator is introduced, one designed to calculate the global 360 degree evolution of a self-gravitating planetary ring that is in orbit about an oblate planet. This freely-available code is called epi_int, and it is distinct from other such codes in its use of streamlines to calculate the effects of ring self-gravity. The great advantage of this approach is that the perturbing forces arise from smooth wires of ring matter rather than discreet particles, so there is very little gravitational scattering and so only a modest number of particles are needed to simulate, say, the scalloped edge of a resonantly confined ring or the propagation of spiral density waves. The code is applied to the outer edge of Saturn's B ring, and a comparison of Cassini measurements of the ring's forced response to simulations of Mimas' resonant perturbations reveals that the B ring's surface density at its outer edge is 195+-60 gm/cm^2 which, if the same everywhere across the ring would mean that the B ring's mass is about 90% of Mimas' mass. Cassini observations show that the B ring-edge has several free normal modes, which are long-lived disturbances of the ring-edge that are not driven by any known satellite resonances. Although the mechanism that excites or sustains these normal modes is unknown, we can plant such a disturbance at a simulated ring's edge, and find that these modes persist without any damping for more than ~10^5 orbits or ~100 yrs despite the simulated ring's viscosity of 100 cm^2/sec. These simulations also indicate that impulsive disturbances at a ring can excite long-lived normal modes, which suggests that an impact in the recent past by perhaps a cloud of cometary debris might have excited these disturbances which are quite common to many of Saturn's sharp-edged rings.Comment: 55 pages, 13 figures, accepted for publication in the Astrophysical Journa

    Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem

    Full text link
    The broadcast scheduling problem asks how a multihop network of broadcast transceivers operating on a shared medium may share the medium in such a way that communication over the entire network is possible. This can be naturally modeled as a graph coloring problem via distance-2 coloring (L(1,1)-labeling, strict scheduling). This coloring is difficult to compute and may require a number of colors quadratic in the graph degree. This paper introduces pseudo-scheduling, a relaxation of distance-2 coloring. Centralized and decentralized algorithms that compute pseudo-schedules with colors linear in the graph degree are given and proved.Comment: 8th International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities (ALGOSENSORS 2012), 13-14 September 2012, Ljubljana, Slovenia. 12 page
    corecore