17 research outputs found

    Antisense inhibition of methylenetetrahydrofolate reductase reduces survival of methionine-dependent tumour lines

    Get PDF
    Transformed cells have been documented to be methionine-dependent, suggesting that inhibition of methionine synthesis might be useful for cancer therapy. Methylenetetrahydrofolate reductase synthesises 5-methyltetrahydrofolate, the methyl donor utilised in methionine synthesis from homocysteine by vitamin B12-dependent methionine synthase. We hypothesised that methylenetetrahydrofolate reductase inhibition would affect cell viability through decreased methionine synthesis. Using medium lacking methionine, but containing homocysteine and vitamin B12 (M-H+), we found that nontransformed human fibroblasts could maintain growth. In contrast, four transformed cell lines (one colon carcinoma, two neuroblastoma and one breast carcinoma) increased proliferation only slightly in the M-H+ medium. To downregulate methylenetetrahydrofolate reductase expression, two phosphorothioate antisense oligonucleotides, EX5 and 677T, were used to target methylenetetrahydrofolate reductase in the colon carcinoma line SW620; 400 nM of each antisense oligonucleotide decreased cell survival by approximately 80% (P<0.01) and 70% (P<0.0001), respectively, compared to cell survival after the respective control mismatched oligonucleotide. Western blotting and enzyme assays confirmed that methylenetetrahydrofolate reductase expression was decreased. Two neuroblastoma and two breast carcinoma lines also demonstrated decreased survival following EX5 treatment whereas nontransformed human fibroblasts were not affected. This study suggests that methylenetetrahydrofolate reductase may be required for tumour cell survival and that methylenetetrahydrofolate reductase inhibition should be considered for anti-tumour therapy

    Proteome-Wide Search Reveals Unexpected RNA-Binding Proteins in Saccharomyces cerevisiae

    Get PDF
    The vast landscape of RNA-protein interactions at the heart of post-transcriptional regulation remains largely unexplored. Indeed it is likely that, even in yeast, a substantial fraction of the regulatory RNA-binding proteins (RBPs) remain to be discovered. Systematic experimental methods can play a key role in discovering these RBPs - most of the known yeast RBPs lack RNA-binding domains that might enable this activity to be predicted. We describe here a proteome-wide approach to identify RNA-protein interactions based on in vitro binding of RNA samples to yeast protein microarrays that represent over 80% of the yeast proteome. We used this procedure to screen for novel RBPs and RNA-protein interactions. A complementary mass spectrometry technique also identified proteins that associate with yeast mRNAs. Both the protein microarray and mass spectrometry methods successfully identify previously annotated RBPs, suggesting that other proteins identified in these assays might be novel RBPs. Of 35 putative novel RBPs identified by either or both of these methods, 12, including 75% of the eight most highly-ranked candidates, reproducibly associated with specific cellular RNAs. Surprisingly, most of the 12 newly discovered RBPs were enzymes. Functional characteristics of the RNA targets of some of the novel RBPs suggest coordinated post-transcriptional regulation of subunits of protein complexes and a possible link between mRNA trafficking and vesicle transport. Our results suggest that many more RBPs still remain to be identified and provide a set of candidates for further investigation

    New Clathrin-Based Nanoplatforms for Magnetic Resonance Imaging

    Get PDF
    Background: Magnetic Resonance Imaging (MRI) has high spatial resolution, but low sensitivity for visualization of molecular targets in the central nervous system (CNS). Our goal was to develop a new MRI method with the potential for non-invasive molecular brain imaging. We herein introduce new bio-nanotechnology approaches for designing CNS contrast media based on the ubiquitous clathrin cell protein. Methodology/Principal Findings: The first approach utilizes three-legged clathrin triskelia modified to carry 81 gadolinium chelates. The second approach uses clathrin cages self-assembled from triskelia and designed to carry 432 gadolinium chelates. Clathrin triskelia and cages were characterized by size, structure, protein concentration, and chelate and gadolinium contents. Relaxivity was evaluated at 0.47 T. A series of studies were conducted to ascertain whether fluorescent-tagged clathrin nanoplatforms could cross the blood brain barriers (BBB) unaided following intranasal, intravenous, and intraperitoneal routes of administration. Clathrin nanoparticles can be constituted as triskelia (18.5 nm in size), and as cages assembled from them (55 nm). The mean chelate: clathrin heavy chain molar ratio was 27.0464.8: 1 fo

    Combined treatment of pediatric high-grade glioma with the oncolytic viral strain MTH-68/H and oral valproic acid.

    No full text
    The case of a 12-year-old boy with anaplastic astrocytoma of the left thalamus is reported. Postoperative irradiation and chemotherapy could not repress tumor progression; therefore, treatment was undertaken with an oncolytic virus, MTH-68/H, an attenuated strain of Newcastle disease virus (NDV), and valproic acid (VPA), an antiepileptic drug, which also has antineoplastic properties. This treatment resulted in a far-reaching regression of the thalamic glioma, but 4 months later a new tumor manifestation, an extension of the thalamic tumor, appeared in the wall of the IVth ventricle, which required a second neurosurgical intervention. Under continuous MTH-68/H - VPA administration the thalamic tumor remained under control, but the rhombencephalic one progressed relentlessly and led to the fatal outcome. In the final stage, a third tumor manifestation appeared in the left temporal lobe. The possible reasons for the antagonistic behavior of the three manifestations of the same type of glioma to the initially most successful therapy are discussed. The comparative histological study of the thalamic and rhombencephalic tumor manifestations revealed that MTH-68/H treatment induces, similar to in vitro observations, a massive apoptotic tumor cell decline. In the rhombencephalic tumor, in and around the declining tumor cells, NDV antigen could be demonstrated immunohistochemically, and virus particles have been found in the cytoplasm of tumor cells at electron microscopic investigation. These findings document that the oncolytic effect of MTH-68/H treatment is the direct consequence of virus presence and replication in the neoplastic cells. This is the first demonstration of NDV constituents in an MTH-68/H -treated glioma

    Characterization of the Nuclear Gene Encoding Mitochondrial Aconitase in the Marine Red Alga Gracilaria-Verrucosa

    No full text
    We have cloned a nuclear gene from the marine red alga Gracilaria verrucosa that encodes the complete 779 amino-acid mitochondral aconitase (m-ACN), the first characterized from a photosynthetic organism. The N-terminal 28 deduced amino acids are predicted to constitute the mitochondrial transit peptide, the first described from a red alga. Putative transcriptional cis-acting elements were identified in the upstream untranslated region. The G. verrucosa m-ACN gene (m-ACN) is present in a single copy and is located ca. 1.5 kb upstream from the single-copy polyubiquitin gene. The single spliceosomal intron is located near the 5' end of the region encoding the mature m-ACN in precisely the same location and phase as intron 2 in Caenorhabditis elegans m-ACN; sequences at its 3' and 5' splice junctions and at the predicted lariat branch point conform well to the eukaryote consensus sequences. Multiple protein-sequence alignment of m-ACN, bacterial aconitase (b-ACN) and iron-responsive element-binding protein (IRE-BP), and phylogenetic analyses, revealed that m-ACN does not share a recent common ancestry with either b-ACN or IRE-BP
    corecore