112 research outputs found
Physical and land-cover variables influence ant functional groups and species diversity along elevational gradients
Of particular importance in shaping species assemblages is the spatial heterogeneity of the environment. The aim of our study was to investigate the influence of spatial heterogeneity and environmental complexity on the distribution of ant functional groups and species diversity along altitudinal gradients in a temperate ecosystem (Pyrenees Mountains). During three summers, we sampled 20 sites distributed across two Pyrenean valleys ranging in altitude from 1,009 to 2,339 m by using pitfall traps and hand collection. The environment around each sampling points was characterized by using both physical and land-cover variables. We then used a self-organizing map algorithm (SOM, neural network) to detect and characterize the relationship between the spatial distribution of ant functional groups, species diversity, and the variables measured. The use of SOM allowed us to reduce the apparent complexity of the environment to five clusters that highlighted two main gradients: an altitudinal gradient and a gradient of environmental closure. The composition of ant functional groups and species diversity changed along both of these gradients and was differently affected by environmental variables. The SOM also allowed us to validate the contours of most ant functional groups by highlighting the response of these groups to the environmental and land-cover variables
Variation in RNA Virus Mutation Rates across Host Cells
It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10−6 to 10−4 substitutions per nucleotide per round of copying (s/n/r) and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV), which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10−5 s/n/r). Cell immortalization through p53 inactivation and oxygen levels (1–21%) did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature
Environmental Constraints Guide Migration of Malaria Parasites during Transmission
Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission
An Induced Mutation in Tomato eIF4E Leads to Immunity to Two Potyviruses
BACKGROUND: The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS: To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE: Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study
The French national prospective cohort of patients co-infected with HIV and HCV (ANRS CO13 HEPAVIH): Early findings, 2006-2010
<p>Abstract</p> <p>Background</p> <p>In France, it is estimated that 24% of HIV-infected patients are also infected with HCV. Longitudinal studies addressing clinical and public health questions related to HIV-HCV co-infection (HIV-HCV clinical progression and its determinants including genetic dimension, patients' experience with these two diseases and their treatments) are limited. The ANRS CO 13 HEPAVIH cohort was set up to explore these critical questions.</p> <p>To describe the cohort aims and organization, monitoring and data collection procedures, baseline characteristics, as well as follow-up findings to date.</p> <p>Methods</p> <p>Inclusion criteria in the cohort were: age > 18 years, HIV-1 infection, chronic hepatitis C virus (HCV) infection or sustained response to HCV treatment. A standardized medical questionnaire collecting socio-demographic, clinical, biological, therapeutic, histological, ultrasound and endoscopic data is administered at enrolment, then every six months for cirrhotic patients or yearly for non-cirrhotic patients. Also, a self-administered questionnaire documenting socio-behavioral data and adherence to HIV and/or HCV treatments is administered at enrolment and yearly thereafter.</p> <p>Results</p> <p>A total of 1,175 patients were included from January 2006 to December 2008. Their median age at enrolment was 45 years and 70.2% were male. The median CD4 cell count was 442 (IQR: 304-633) cells/μl and HIV RNA plasma viral load was undetectable in 68.8%. Most participants (71.6%) were on HAART. Among the 1,048 HIV-HCV chronically co-infected patients, HCV genotype 1 was predominant (56%) and cirrhosis was present in 25%. As of January, 2010, after a median follow-up of 16.7 months (IQR: 11.3-25.3), 13 new cases of decompensated cirrhosis, nine hepatocellular carcinomas and 20 HCV-related deaths were reported, resulting in a cumulative HCV-related severe event rate of 1.9/100 person-years (95% CI: 1.3-2.5). The rate of HCV-related severe events was higher in cirrhotic patients and those with a low CD4 cells count, but did not differ according to sex, age, alcohol consumption, CDC clinical stage or HCV status.</p> <p>Conclusion</p> <p>The ANRS CO 13 HEPAVIH is a nation-wide cohort using a large network of HIV treatment, infectious diseases and internal medicine clinics in France, and thus is highly representative of the French population living with these two viruses and in care.</p
CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells
Cancer survival rates decrease in the presence of disseminated disease. However, there are few therapies that are effective at eliminating the primary tumour while providing control of distant stage disease. Photodynamic therapy (PDT) is an FDA-approved modality that rapidly eliminates local tumours, resulting in cure of early disease and palliation of advanced disease. Numerous pre-clinical studies have shown that local PDT treatment of tumours enhances anti-tumour immunity. We hypothesised that enhancement of a systemic anti-tumour immune response might control the growth of tumours present outside the treatment field. To test this hypothesis we delivered PDT to subcutaneous (s.c.) tumours of mice bearing both s.c. and lung tumours and monitored the growth of the untreated lung tumours. Our results demonstrate that PDT of murine tumours provided durable inhibition of the growth of untreated lung tumours. The inhibition of the growth of tumours outside the treatment field was tumour-specific and dependent on the presence of CD8+ T cells. This inhibition was accompanied by an increase in splenic anti-tumour cytolytic activity and by an increase in CD8+ T cell infiltration into untreated tumours. Local PDT treatment led to enhanced anti-tumour immune memory that was evident 40 days after tumour treatment and was independent of CD4+ T cells. CD8+ T cell control of the growth of lung tumours present outside the treatment field following PDT was dependent upon the presence of natural killer (NK) cells. These results suggest that local PDT treatment of tumours lead to induction of an anti-tumour immune response capable of controlling the growth of tumours outside the treatment field and indicate that this modality has potential in the treatment of distant stage disease
Cross-linking mass spectrometry:methods and applications in structural, molecular and systems biology
Diacerein: Benefits, Risks and Place in the Management of Osteoarthritis. An Opinion-Based Report from the ESCEO
A research agenda for malaria eradication: basic science and enabling technologies.
Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences
- …
