355 research outputs found

    Beliefs about the Minds of Others Influence How We Process Sensory Information

    Get PDF
    Attending where others gaze is one of the most fundamental mechanisms of social cognition. The present study is the first to examine the impact of the attribution of mind to others on gaze-guided attentional orienting and its ERP correlates. Using a paradigm in which attention was guided to a location by the gaze of a centrally presented face, we manipulated participants' beliefs about the gazer: gaze behavior was believed to result either from operations of a mind or from a machine. In Experiment 1, beliefs were manipulated by cue identity (human or robot), while in Experiment 2, cue identity (robot) remained identical across conditions and beliefs were manipulated solely via instruction, which was irrelevant to the task. ERP results and behavior showed that participants' attention was guided by gaze only when gaze was believed to be controlled by a human. Specifically, the P1 was more enhanced for validly, relative to invalidly, cued targets only when participants believed the gaze behavior was the result of a mind, rather than of a machine. This shows that sensory gain control can be influenced by higher-order (task-irrelevant) beliefs about the observed scene. We propose a new interdisciplinary model of social attention, which integrates ideas from cognitive and social neuroscience, as well as philosophy in order to provide a framework for understanding a crucial aspect of how humans' beliefs about the observed scene influence sensory processing

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    Time-resolved pump-probe spectroscopy with spectral domain ghost imaging

    Get PDF
    An atomic-level picture of molecular and bulk processes, such as chemical bonding and charge transfer, necessitates an understanding of the dynamical evolution of these systems. On the ultrafast timescales associated with nuclear and electronic motion, the temporal behaviour of a system is often interrogated in a 'pump-probe' scheme. Here, an initial 'pump' pulse triggers dynamics through photoexcitation, and after a carefully controlled delay a 'probe' pulse initiates projection of the instantaneous state of the evolving system onto an informative measurable quantity, such as electron binding energy. In this paper, we apply spectral ghost imaging to a pump-probe time-resolved experiment at an X-ray free-electron laser (XFEL) facility, where the observable is spectral absorption in the X-ray regime. By exploiting the correlation present in the shot-to-shot fluctuations in the incoming X-ray pulses and measured electron kinetic energies, we show that spectral ghost imaging can be applied to time-resolved pump-probe measurements. In the experiment presented, interpretation of the measurement is simplified because spectral ghost imaging separates the overlapping contributions to the photoelectron spectrum from the pump and probe pulse

    Streaking single-electron ionization in open-shell molecules driven by x-ray pulses

    Get PDF
    We obtain continuum molecular wavefunctions for open-shell molecules in the Hartree-Fock framework. We do so while accounting for the singlet or triplet total spin symmetry of the molecular ion, that is, of the open-shell orbital and the initial orbital where the electron ionizes from. Using these continuum wavefunctions, we obtain the dipole matrix elements for a core electron that ionizes due to single-photon absorption by a linearly polarized x-ray pulse. After ionization from the x-ray pulse, we control or streak the electron dynamics using a circularly polarized infrared (IR) pulse. For a high-intensity IR pulse and photon energies of the x-ray pulse close to the ionization threshold of the 1σ or 2σ orbitals, we achieve control of the angle of escape of the ionizing electron by varying the phase delay between the x-ray and IR pulses. For a low-intensity IR pulse, we obtain final electron momenta distributions on the plane of the circularly polarized IR pulse and we find that many features of these distributions correspond to the angular patterns of electron escape solely due to the x-ray pulse

    Inner Valence Hole Migration in Isopropanol

    Get PDF
    Even within the sudden approximation, the removal of one neutral Hartree-Fock orbital does not leave the molecule in a pure one-hole state of the cation; coupling to virtual orbitals leads to a breakdown in the molecular orbital picture. This can be understood as interaction with two-hole one-particle states (singly excited cations) and becomes significant when those states are energetically similar to the one-hole states. This splitting of states is most relevant for inner valence holes which lie above the double ionisation potential. As such, impulsive creation of an inner valence hole (IVH) wavepacket results in a time dependent charge density which is purely electronic in nature (charge migration) [1] , [2] , though it depends on the nuclear geometry at the time of excitation, and subsequent nuclear motion will result in decoherence [3]

    P2X7 receptors induce degranulation in human mast cells.

    Get PDF
    Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Testing a dynamic field account of interactions between spatial attention and spatial working memory

    Get PDF
    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: if attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal is reexamined in light of a neural process model of SWM. On the basis of the model’s functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color-discrimination task during the delay interval of a spatial recall task. In the critical shifting attention condition, the color stimulus could appear either toward or away from the memorized location relative to a midline reference axis. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors but no change in directional error, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations—as predicted by the model—there should be systematic changes in the pattern of spatial recall errors depending on the direction of the shift. Results were consistent with the latter possibility—recall errors were biased toward the location of discrimination targets appearing during the delay

    Two-Dimensional Partial-Covariance Mass Spectrometry of Large Molecules Based on Fragment Correlations

    Get PDF
    Covariance mapping [L. J. Frasinski, K. Codling, and P. A. Hatherly, Science 246, 1029 (1989)] is a well-established technique used for the study of mechanisms of laser-induced molecular ionization and decomposition. It measures statistical correlations between fluctuating signals of pairs of detected species (ions, fragments, electrons). A positive correlation identifies pairs of products originating from the same dissociation or ionization event. A major challenge for covariance-mapping spectroscopy is accessing decompositions of large polyatomic molecules, where true physical correlations are overwhelmed by spurious signals of no physical significance induced by fluctuations in experimental parameters. As a result, successful applications of covariance mapping have so far been restricted to low-mass systems, e.g., organic molecules of around 50 daltons (Da). Partial-covariance mapping was suggested to tackle the problem of spurious correlations by taking into account the independently measured fluctuations in the experimental conditions. However, its potential has never been realized for the decomposition of large molecules, because in these complex situations, determining and continuously monitoring multiple experimental parameters affecting all the measured signals simultaneously becomes unfeasible. We introduce, through deriving theoretically and confirming experimentally, a conceptually new type of partial-covariance mapping—self-correcting partial-covariance spectroscopy—based on a parameter extracted from the measured spectrum itself. We use the readily available total ion count as the self-correcting partial-covariance parameter, thus eliminating the challenge of determining experimental parameter fluctuations in covariance measurements of large complex systems. The introduced self-correcting partial covariance enables us to successfully resolve correlations of molecules as large as 10 3 – 10 4     Da , 2 orders of magnitude above the state of the art. This opens new opportunities for mechanistic studies of large molecule decompositions through revealing their fragment-fragment correlations. Moreover, we demonstrate that self-correcting partial covariance is applicable to solving the inverse problem: reconstruction of a molecular structure from its fragment spectrum, within two-dimensional partial-covariance mass spectrometry

    Geographies of landscape: Representation, power and meaning

    Get PDF
    Green criminology has sought to blur the nature-culture binary and this article seeks to extend recent work by geographers writing on landscape to further our understanding of the shifting contours of the divide. The article begins by setting out these different approaches, before addressing how dynamics of surveillance and conquest are embedded in landscape photography. It then describes how the ways we visualize the Earth were reconfigured with the emergence of photography in the 19th century and how the world itself has been transformed into a target in our global media culture
    corecore