15,949 research outputs found
Fast physical models for Si LDMOS power transistor characterization
A new nonlinear, process-oriented, quasi-two-dimensional (Q2D) model is described for microwave laterally diffused MOS (LDMOS) power transistors. A set of one-dimensional energy transport equations are solved across a two-dimensional cross-section in a “current-driven” form. The model accounts for avalanche breakdown and gate conduction, and accurately predicts DC and microwave characteristics at execution speeds sufficiently fast for circuit simulation applications
Spitzer Observations of Interstellar Object 1I/`Oumuamua
1I/`Oumuamua is the first confirmed interstellar body in our Solar System.
Here we report on observations of `Oumuamua made with the Spitzer Space
Telescope on 2017 November 21--22 (UT). We integrated for 30.2~hours at 4.5
micron (IRAC channel 2). We did not detect the object and place an upper limit
on the flux of 0.3 uJy (3sigma). This implies an effective spherical diameter
less than [98, 140, 440] meters and albedo greater than [0.2, 0.1, 0.01] under
the assumption of low, middle, or high thermal beaming parameter eta,
respectively. With an aspect ratio for `Oumuamua of 6:1, these results
correspond to dimensions of [240:40, 341:57, 1080:180] meters, respectively. We
place upper limits on the amount of dust, CO, and CO2 coming from this object
that are lower than previous results; we are unable to constrain the production
of other gas species. Both our size and outgassing limits are important because
`Oumuamua's trajectory shows non-gravitational accelerations that are sensitive
to size and mass and presumably caused by gas emission. We suggest that
`Oumuamua may have experienced low-level post-perihelion volatile emission that
produced a fresh, bright, icy mantle. This model is consistent with the
expected eta value and implied high albedo value for this solution, but, given
our strict limits on CO and CO2, requires another gas species --- probably H2O
--- to explain the observed non-gravitational acceleration. Our results extend
the mystery of `Oumuamua's origin and evolution
Exciton Condensation and Perfect Coulomb Drag
Coulomb drag is a process whereby the repulsive interactions between
electrons in spatially separated conductors enable a current flowing in one of
the conductors to induce a voltage drop in the other. If the second conductor
is part of a closed circuit, a net current will flow in that circuit. The drag
current is typically much smaller than the drive current owing to the heavy
screening of the Coulomb interaction. There are, however, rare situations in
which strong electronic correlations exist between the two conductors. For
example, bilayer two-dimensional electron systems can support an exciton
condensate consisting of electrons in one layer tightly bound to holes in the
other. One thus expects "perfect" drag; a transport current of electrons driven
through one layer is accompanied by an equal one of holes in the other. (The
electrical currents are therefore opposite in sign.) Here we demonstrate just
this effect, taking care to ensure that the electron-hole pairs dominate the
transport and that tunneling of charge between the layers is negligible.Comment: 12 pages, 4 figure
Quantifying trading behavior in financial markets using Google Trends
Crises in financial markets affect humans worldwide. Detailed market data on trading decisions reflect some of the complex human behavior that has led to these crises. We suggest that massive new data sources resulting from human interaction with the Internet may offer a new perspective on the behavior of market participants in periods of large market movements. By analyzing changes in Google query volumes for search terms related to finance, we find patterns that may be interpreted as “early warning signs” of stock market moves. Our results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior
Riociguat: Mode of action and clinical development in pulmonary hypertension
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are progressive and debilitating diseases characterized by gradual obstruction of the pulmonary vasculature, leading to elevated pulmonary artery pressure and increased pulmonary vascular resistance. If untreated, they can result in death due to right heart failure. Riociguat is a novel soluble guanylate cyclase (sGC) stimulator that is approved for the treatment of PAH and CTEPH. Here we describe in detail the role of the nitric oxide-sGC-cyclic guanosine monophosphate (cGMP) signaling pathway in the pathogenesis of PAH and CTEPH, and the mode of action of riociguat. We also review the preclinical data associated with the development of riociguat, along with the efficacy and safety data of riociguat from initial clinical trials and the pivotal Phase III randomized clinical trials in PAH and CTEPH
Measuring co-authorship and networking-adjusted scientific impact
Appraisal of the scientific impact of researchers, teams and institutions
with productivity and citation metrics has major repercussions. Funding and
promotion of individuals and survival of teams and institutions depend on
publications and citations. In this competitive environment, the number of
authors per paper is increasing and apparently some co-authors don't satisfy
authorship criteria. Listing of individual contributions is still sporadic and
also open to manipulation. Metrics are needed to measure the networking
intensity for a single scientist or group of scientists accounting for patterns
of co-authorship. Here, I define I1 for a single scientist as the number of
authors who appear in at least I1 papers of the specific scientist. For a group
of scientists or institution, In is defined as the number of authors who appear
in at least In papers that bear the affiliation of the group or institution. I1
depends on the number of papers authored Np. The power exponent R of the
relationship between I1 and Np categorizes scientists as solitary (R>2.5),
nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or
collaborators (R<1.75). R may be used to adjust for co-authorship networking
the citation impact of a scientist. In similarly provides a simple measure of
the effective networking size to adjust the citation impact of groups or
institutions. Empirical data are provided for single scientists and
institutions for the proposed metrics. Cautious adoption of adjustments for
co-authorship and networking in scientific appraisals may offer incentives for
more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure
Scale invariance and universality of force networks in static granular matter
Force networks form the skeleton of static granular matter. They are the key
ingredient to mechanical properties, such as stability, elasticity and sound
transmission, which are of utmost importance for civil engineering and
industrial processing. Previous studies have focused on the global structure of
external forces (the boundary condition), and on the probability distribution
of individual contact forces. The disordered spatial structure of the force
network, however, has remained elusive so far. Here we report evidence for
scale invariance of clusters of particles that interact via relatively strong
forces. We analyzed granular packings generated by molecular dynamics
simulations mimicking real granular matter; despite the visual variation, force
networks for various values of the confining pressure and other parameters have
identical scaling exponents and scaling function, and thus determine a
universality class. Remarkably, the flat ensemble of force configurations--a
simple generalization of equilibrium statistical mechanics--belongs to the same
universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur
Moving from evidence-based medicine to evidence-based health.
While evidence-based medicine (EBM) has advanced medical practice, the health care system has been inconsistent in translating EBM into improvements in health. Disparities in health and health care play out through patients' limited ability to incorporate the advances of EBM into their daily lives. Assisting patients to self-manage their chronic conditions and paying attention to unhealthy community factors could be added to EBM to create a broader paradigm of evidence-based health. A perspective of evidence-based health may encourage physicians to consider their role in upstream efforts to combat socially patterned chronic disease
Thermodynamics of an ideal generalized gas:II Means of order
The property that power means are monotonically increasing functions of their
order is shown to be the basis of the second laws not only for processes
involving heat conduction but also for processes involving deformations. In an
-potentail equilibration the final state will be one of maximum entropy,
while in an entropy equilibrium the final state will be one of minimum . A
metric space is connected with the power means, and the distance between means
of different order is related to the Carnot efficiency. In the ideal classical
gas limit, the average change in the entropy is shown to be proportional to the
difference between the Shannon and R\'enyi entropies for nonextensive systems
that are multifractal in nature. The -potential, like the internal energy,
is a Schur convex function of the empirical temperature, which satisfies
Jensen's inequality, and serves as a measure of the tendency to uniformity in
processes involving pure thermal conduction.Comment: 8 page
- …
