41 research outputs found

    Exploring the Switchgrass Transcriptome Using Second-Generation Sequencing Technology

    Get PDF
    Background: Switchgrass (Panicum virgatum L.) is a C4 perennial grass and widely popular as an important bioenergy crop. To accelerate the pace of developing high yielding switchgrass cultivars adapted to diverse environmental niches, the generation of genomic resources for this plant is necessary. The large genome size and polyploid nature of switchgrass makes whole genome sequencing a daunting task even with current technologies. Exploring the transcriptional landscape using next generation sequencing technologies provides a viable alternative to whole genome sequencing in switchgrass. Principal Findings: Switchgrass cDNA libraries from germinating seedlings, emerging tillers, flowers, and dormant seeds were sequenced using Roche 454 GS-FLX Titanium technology, generating 980,000 reads with an average read length of 367 bp. De novo assembly generated 243,600 contigs with an average length of 535 bp. Using the foxtail millet genome as a reference greatly improved the assembly and annotation of switchgrass ESTs. Comparative analysis of the 454-derived switchgrass EST reads with other sequenced monocots including Brachypodium, sorghum, rice and maize indicated a 70– 80 % overlap. RPKM analysis demonstrated unique transcriptional signatures of the four tissues analyzed in this study. More than 24,000 ESTs were identified in the dormant seed library. In silico analysis indicated that there are more than 2000 EST-SSRs in this collection. Expression of several orphan ESTs was confirmed by RT-PCR. Significance: We estimate that about 90 % of the switchgrass gene space has been covered in this analysis. This study nearl

    A phase I/II study of intrathecal idursulfase-IT in children with severe mucopolysaccharidosis II

    Get PDF
    Approximately two-thirds of patients with the lysosomal storage disease mucopolysaccharidosis II have progressive cognitive impairment. Intravenous (i.v.) enzyme replacement therapy does not affect cognitive impairment because recombinant iduronate-2-sulfatase (idursulfase) does not penetrate the blood-brain barrier at therapeutic concentrations. We examined the safety of idursulfase formulated for intrathecal administration (idursulfase-IT) via intrathecal drug delivery device (IDDD). A secondary endpoint was change in concentration of glycosaminoglycans in cerebrospinal fluid. Sixteen cognitively impaired males with mucopolysaccharidosis II who were previously treated with weekly i.v. idursulfase 0.5 mg/kg for ≥6 months were enrolled. Patients were randomized to no treatment or 10-mg, 30-mg, or 1-mg idursulfase-IT monthly for 6 months (four patients per group) while continuing i.v. idursulfase weekly. No serious adverse events related to idursulfase-IT were observed. Surgical revision/removal of the IDDD was required in 6 of 12 patients. Twelve total doses were administrated by lumbar puncture. Mean cerebrospinal fluid glycosaminoglycan concentration was reduced by approximately 90% in the 10-mg and 30-mg groups and approximately 80% in the 1-mg group after 6 months. These preliminary data support further development of investigational idursulfase-IT in MPS II patients with the severe phenotype who have progressed only to a mild-to-moderate level of cognitive impairment.Genet Med advance online publication 02 April 2015Genetics in Medicine (2015); doi:10.1038/gim.2015.36

    Review of Randomization Methodsin Clinical Trials

    No full text

    A review of randomization methods in clinical trials

    No full text

    A simple method for analyzing data from a randomized trial with a missing binary outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many randomized trials involve missing binary outcomes. Although many previous adjustments for missing binary outcomes have been proposed, none of these makes explicit use of randomization to bound the bias when the data are not missing at random.</p> <p>Methods</p> <p>We propose a novel approach that uses the randomization distribution to compute the anticipated maximum bias when missing at random does not hold due to an unobserved binary covariate (implying that missingness depends on outcome and treatment group). The anticipated maximum bias equals the product of two factors: (<it>a</it>) the anticipated maximum bias if there were complete confounding of the unobserved covariate with treatment group among subjects with an observed outcome and (<it>b</it>) an upper bound factor that depends only on the fraction missing in each randomization group. If less than 15% of subjects are missing in each group, the upper bound factor is less than .18.</p> <p>Results</p> <p>We illustrated the methodology using data from the Polyp Prevention Trial. We anticipated a maximum bias under complete confounding of .25. With only 7% and 9% missing in each arm, the upper bound factor, after adjusting for age and sex, was .10. The anticipated maximum bias of .25 × .10 =.025 would not have affected the conclusion of no treatment effect.</p> <p>Conclusion</p> <p>This approach is easy to implement and is particularly informative when less than 15% of subjects are missing in each arm.</p
    corecore