4,194 research outputs found
The FGK formalism for black p-branes in d dimensions
We present a generalization to an arbitrary number of spacetime (d) and
worldvolume (p+1) dimensions of the formalism proposed by Ferrara, Gibbons and
Kallosh to study black holes (p=0) in d=4 dimensions. We include the special
cases in which there can be dyonic and self- or anti-self-dual black branes.
Most of the results valid for 4-dimensional black holes (relations between
temperature, entropy and non-extremality parameter, and between entropy and
black-hole potential on the horizon) are straightforwardly generalized.
We apply the formalism to the case of black strings in N=2,d=5 supergravity
coupled to vector multiplets, in which the black-string potential can be
expressed in terms of the dual central charge and work out an explicit example
with one vector multiplet, determining supersymmetric and non-supersymmetric
attractors and constructing the non-extremal black-string solutions that
interpolate between them.Comment: 28 pages no figures; v2: some references adde
Generalized Weyl solutions in d=5 Einstein-Gauss-Bonnet theory: the static black ring
We argue that the Weyl coordinates and the rod-structure employed to
construct static axisymmetric solutions in higher dimensional Einstein gravity
can be generalized to the Einstein-Gauss-Bonnet theory. As a concrete
application of the general formalism, we present numerical evidence for the
existence of static black ring solutions in Einstein-Gauss-Bonnet theory in
five spacetime dimensions. They approach asymptotically the Minkowski
background and are supported against collapse by a conical singularity in the
form of a disk. An interesting feature of these solutions is that the
Gauss-Bonnet term reduces the conical excess of the static black rings.
Analogous to the Einstein-Gauss-Bonnet black strings, for a given mass the
static black rings exist up to a maximal value of the Gauss-Bonnet coupling
constant . Moreover, in the limit of large ring radius, the suitably
rescaled black ring maximal value of and the black string maximal
value of agree.Comment: 43 pages, 14 figure
Application of the speed-duration relationship to normalize the intensity of high-intensity interval training
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols
Holographic Studies of Entanglement Entropy in Superconductors
We present the results of our studies of the entanglement entropy of a
superconducting system described holographically as a fully back-reacted
gravity system, with a stable ground state. We use the holographic prescription
for the entanglement entropy. We uncover the behavior of the entropy across the
superconducting phase transition, showing the reorganization of the degrees of
freedom of the system. We exhibit the behaviour of the entanglement entropy
from the superconducting transition all the way down to the ground state at
T=0. In some cases, we also observe a novel transition in the entanglement
entropy at intermediate temperatures, resulting from the detection of an
additional length scale.Comment: 21 pages, 14 figures. v2:Clarified some remarks concerning stability.
v3: Updated to the version that appears in JHE
Flux and Instanton Effects in Local F-theory Models and Hierarchical Fermion Masses
We study the deformation induced by fluxes and instanton effects on Yukawa
couplings involving 7-brane intersections in local F-theory constructions. In
the absence of non-perturbative effects, holomorphic Yukawa couplings do not
depend on open string fluxes. On the other hand instanton effects (or gaugino
condensation on distant 7-branes) do induce corrections to the Yukawas. The
leading order effect may also be captured by the presence of closed string
(1,2) IASD fluxes, which give rise to a non-commutative structure. We check
that even in the presence of these non-perturbative effects the holomorphic
Yukawas remain independent of magnetic fluxes. Although fermion mass
hierarchies may be obtained from these non-perturbative effects, they would
give identical Yukawa couplings for D-quark and Lepton masses in SU(5) F-theory
GUT's, in contradiction with experiment. We point out that this problem may be
solved by appropriately normalizing the wavefunctions. We show in a simple toy
model how the presence of hypercharge flux may then be responsible for the
difference between D-quarks and Lepton masses in local SU(5) GUT's.Comment: 84 pages, 1 figure. v2: minor corrections and references adde
Z-extremization and F-theorem in Chern-Simons matter theories
The three dimensional exact R symmetry of N=2 SCFTs extremizes the partition
function localized on a three sphere. Here we verify this statement at weak
coupling. We give a detailed analysis for two classes of models. The first one
is an SU(N)_k gauge theory at large k with both fundamental and adjoint matter
fields, while the second is a flavored version of the ABJ theory, where the CS
levels are large but they do not necessarily sum up to zero. We study in both
cases superpotential deformations and compute the R charges at different fixed
points. When these fixed points are connected by an RG flow we explicitly
verify that the free energy decreases at the endpoints of the flow between the
fixed points, corroborating the conjecture of an F-theorem in three dimensions.Comment: 28 pages, 3 figures, JHEP.cls, minor corrections, references adde
Non-singlet Baryons in Less Supersymmetric Backgrounds
We analyze the holographic description of non-singlet baryons in various
backgrounds with reduced supersymmetries and/or confinement. We show that they
exist in all AdS_5xY_5 backgrounds with Y_5 an Einstein manifold bearing five
form flux, for a number of quarks 5N/8< k< N, independently on the
supersymmetries preserved. This result still holds for gamma_i deformations. In
the confining Maldacena-Nunez background non-singlet baryons also exist,
although in this case the interval for the number of quarks is reduced as
compared to the conformal case. We generalize these configurations to include a
non-vanishing magnetic flux such that a complementary microscopical description
can be given in terms of lower dimensional branes expanding into fuzzy baryons.
This description is a first step towards exploring the finite 't Hooft coupling
region.Comment: 36 Pages, 1 figure, Latex, v2: few minor changes, JHEP versio
Towards the F-Theorem: N=2 Field Theories on the Three-Sphere
For 3-dimensional field theories with {\cal N}=2 supersymmetry the Euclidean
path integrals on the three-sphere can be calculated using the method of
localization; they reduce to certain matrix integrals that depend on the
R-charges of the matter fields. We solve a number of such large N matrix models
and calculate the free energy F as a function of the trial R-charges consistent
with the marginality of the superpotential. In all our {\cal N}=2
superconformal examples, the local maximization of F yields answers that scale
as N^{3/2} and agree with the dual M-theory backgrounds AdS_4 x Y, where Y are
7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local
F-maximization is equivalent to the minimization of the volume of Y over the
space of Sasakian metrics, a procedure also referred to as Z-minimization.
Moreover, we find that the functions F and Z are related for any trial
R-charges. In the models we study F is positive and decreases along RG flows.
We therefore propose the "F-theorem" that we hope applies to all 3-d field
theories: the finite part of the free energy on the three-sphere decreases
along RG trajectories and is stationary at RG fixed points. We also show that
in an infinite class of Chern-Simons-matter gauge theories where the
Chern-Simons levels do not sum to zero, the free energy grows as N^{5/3} at
large N. This non-trivial scaling matches that of the free energy of the
gravity duals in type IIA string theory with Romans mass.Comment: 66 pages, 10 figures; v2: refs. added, minor improvement
On Non-linear Action for Gauged M2-brane
We propose a non-linear extension of U(1) \times U(1) (abelian) ABJM model
including T_{M2} (higher derivative) corrections. The action proposed here is
expected to describe a single M2-brane proving C^4/Z_k target space. The model
includes couplings with the 3-form background in the eleven-dimensional
supergravity which is consistent with the orbifold projection. We show that the
novel higgs mechanism proposed by Mukhi and Papageorgakis does work even in the
presence of higher derivative corrections and couplings with the background
field, giving the correct structure of the Dirac-Born-Infeld action with
Wess-Zumino term for a D2-brane. We also find half BPS solutions in the full
non-linear theory which is interpreted as an another M2-brane intersecting with
the original M2-brane. A possible generalization to U(N) \times U(N) gauge
group is briefly discussed.Comment: 19 pages, no figure, references added, typos correcte
The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau
The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP
- …
