2,100 research outputs found
Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli.
Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology
Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2
Recent theories suggest that the excitations of certain quantum Hall states
may have exotic braiding statistics which could be used to build topological
quantum gates. This has prompted an experimental push to study such states
using confined geometries where the statistics can be tested. We study the
transport properties of quantum point contacts (QPCs) fabricated on a
GaAs/AlGaAs two dimensional electron gas that exhibits well-developed
fractional quantum Hall effect, including at bulk filling fraction 5/2. We find
that a plateau at effective QPC filling factor 5/2 is identifiable in point
contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5
microns. We study the temperature and dc-current-bias dependence of the 5/2
plateau in the QPC, as well as neighboring fractional and integer plateaus in
the QPC while keeping the bulk at filling factor 3. Transport near QPC filling
factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states
with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms
in this confined geometry
Charged, conformal non-relativistic hydrodynamics
We embed a holographic model of an U(1) charged fluid with Galilean
invariance in string theory and calculate its specific heat capacity and
Prandtl number. Such theories are generated by a R-symmetry twist along a null
direction of a N=1 superconformal theory. We study the hydrodynamic properties
of such systems employing ideas from the fluid-gravity correspondence.Comment: 31 pages, 1 figure, JHEP3 style, refs added, typos corrected, missing
terms in spatial charge current and field corrections added, to be published
in JHE
An Open-System Quantum Simulator with Trapped Ions
The control of quantum systems is of fundamental scientific interest and
promises powerful applications and technologies. Impressive progress has been
achieved in isolating the systems from the environment and coherently
controlling their dynamics, as demonstrated by the creation and manipulation of
entanglement in various physical systems. However, for open quantum systems,
engineering the dynamics of many particles by a controlled coupling to an
environment remains largely unexplored. Here we report the first realization of
a toolbox for simulating an open quantum system with up to five qubits. Using a
quantum computing architecture with trapped ions, we combine multi-qubit gates
with optical pumping to implement coherent operations and dissipative
processes. We illustrate this engineering by the dissipative preparation of
entangled states, the simulation of coherent many-body spin interactions and
the quantum non-demolition measurement of multi-qubit observables. By adding
controlled dissipation to coherent operations, this work offers novel prospects
for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see
publication. Manuscript + Supplementary Informatio
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Differential expression of collectins in human placenta and role in inflammation during spontaneous Labor.
© 2014 Yadav et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Collectins, collagen-containing Ca2+ dependent C-type lectins and a class of secretory proteins including SP-A, SP-D and MBL, are integral to immunomodulation and innate immune defense. In the present study, we aimed to investigate their placental transcript synthesis, labor associated differential expression and localization at feto-maternal interface, and their functional implication in spontaneous labor. The study involved using feto-maternal interface (placental/decidual tissues) from two groups of healthy pregnant women at term (≥37 weeks of gestation), undergoing either elective C-section with no labor ('NLc' group, n = 5), or normal vaginal delivery with spontaneous labor ('SLv' group, n = 5). The immune function of SP-D, on term placental explants, was analyzed for cytokine profile using multiplexed cytokine array. SP-A, SP-D and MBL transcripts were observed in the term placenta. The 'SLv' group showed significant up-regulation of SP-D (p = 0.001), and down-regulation of SP-A (p = 0.005), transcripts and protein compared to the 'NLc' group. Significant increase in 43 kDa and 50 kDa SP-D forms in placental and decidual tissues was associated with the spontaneous labor (p<0.05). In addition, the MMP-9-cleaved form of SP-D (25 kDa) was significantly higher in the placentae of 'SLv' group compared to the 'NLc' group (p = 0.002). Labor associated cytokines IL-1α, IL-1β, IL-6, IL-8, IL-10, TNF-α and MCP-1 showed significant increase (p<0.05) in a dose dependent manner in the placental explants treated with nSP-D and rhSP-D. In conclusion, the study emphasizes that SP-A and SP-D proteins associate with the spontaneous labor and SP-D plausibly contributes to the pro-inflammatory immune milieu of feto-maternal tissues.Funding provided by BT/PR15227/BRB/10/906/2011) Department of Biotechnology (DBT), Government of India http://dbtindia.nic.in/index.asp (TM) and Indian Council of Medical Research (ICMR) Junior Research Fellowship (JRF)/Senior Research Fellowship (SRF), Government of India, www.icmr.nic.in (AKY)
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Liquid-gas phase transition in nuclear multifragmentation
The equation of state of nuclear matter suggests that at suitable beam
energies the disassembling hot system formed in heavy ion collisions will pass
through a liquid-gas coexistence region. Searching for the signatures of the
phase transition has been a very important focal point of experimental
endeavours in heavy ion collisions, in the last fifteen years. Simultaneously
theoretical models have been developed to provide information about the
equation of state and reaction mechanisms consistent with the experimental
observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos
corrected, minor text change
Scalar-field Pressure in Induced Gravity with Higgs Potential and Dark Matter
A model of induced gravity with a Higgs potential is investigated in detail
in view of the pressure components related to the scalar-field excitations. The
physical consequences emerging as an artifact due to the presence of these
pressure terms are analysed in terms of the constraints parting from energy
density, solar-relativistic effects and galactic dynamics along with the dark
matter halos.Comment: 26 pages, 3 figures, Minor revision, Published in JHE
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
