2,894 research outputs found
A computational framework to emulate the human perspective in flow cytometric data analysis
Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric data analysis. However, while designing such applications, little or no attention has been paid to the human perspective that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample variation.
<p/>Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by relative concentrations of events around modes. In the second step, these modal clusters are connected with a global hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications of our framework to flow data analysis and show its superiority over other analytical methods.
<p/>Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape provides a flexible and robust framework for computational cytomics
Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments
Global distribution of two fungal pathogens threatening endangered sea turtles
This work was supported by grants of Ministerio de Ciencia e Innovación, Spain (CGL2009-10032, CGL2012-32934). J.M.S.R was supported by PhD fellowship of the CSIC (JAEPre 0901804). The Natural Environment Research Council and the Biotechnology and Biological Sciences Research Council supported P.V.W. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Thanks Machalilla National Park in Ecuador, Pacuare Nature Reserve in Costa Rica, Foundations Natura 2000 in Cape Verde and Equilibrio Azul in Ecuador, Dr. Jesus Muñoz, Dr. Ian Bell, Dr. Juan Patiño for help and technical support during samplingPeer reviewedPublisher PD
IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection
Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Accretion Disks Around Black Holes: Twenty Five Years Later
We study the progress of the theory of accretion disks around black holes in
last twenty five years and explain why advective disks are the best bet in
explaining varied stationary and non-stationary observations from black hole
candidates. We show also that the recently proposed advection dominated flows
are incorrect.Comment: 30 Latex pages including figures. Kluwer Style files included.
Appearing in `Observational Evidence for Black Holes in the Universe', ed.
Sandip K. Chakrabarti, Kluwer Academic Publishers (DORDRECHT: Holland
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Entangled-State Cycles of Atomic Collective-Spin States
We study quantum trajectories of collective atomic spin states of
effective two-level atoms driven with laser and cavity fields. We show that
interesting ``entangled-state cycles'' arise probabilistically when the (Raman)
transition rates between the two atomic levels are set equal. For odd (even)
, there are () possible cycles. During each cycle the
-qubit state switches, with each cavity photon emission, between the states
, where is a Dicke state in a rotated
collective basis. The quantum number (), which distinguishes the
particular cycle, is determined by the photon counting record and varies
randomly from one trajectory to the next. For even it is also possible,
under the same conditions, to prepare probabilistically (but in steady state)
the Dicke state , i.e., an -qubit state with excitations,
which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure
Impact of statin therapy on coronary plaque composition: A systematic review and meta-analysis of virtual histology intravascular ultrasound studies
Background: Virtual histology intravascular ultrasound (VH-IVUS) imaging is an innovative tool for the morphological evaluation of coronary atherosclerosis. Evidence for the effects of statin therapy on VH-IVUS parameters have been inconclusive. Consequently, we performed a systematic review and meta-analysis to investigate the impact of statin therapy on plaque volume and its composition using VH-IVUS. Methods: The search included PubMed, Cochrane Library, Scopus and Embase (through 30 November 2014) to identify prospective studies investigating the effects of statin therapy on plaque volume and its composition using VH-IVUS. Results: We identified nine studies with 16 statin treatment arms and 830 participants. There was a significant effect of statin therapy in reducing plaque volume (standardized mean difference (SMD): -0.137, 95 % confidence interval (CI): -0.255, -0.019; P = 0.023), external elastic membrane volume (SMD: -0.097, 95 % CI: -0.183, -0.011; P = 0.027) but not lumen volume (SMD: -0.025, 95 % CI: -0.110, +0.061; P = 0.574). There was a significant reduction in fibrous plaque volume (SMD: -0.129, 95 % CI: -0.255, -0.003; P = 0.045) and an increase of dense calcium volume (SMD: +0.229, 95 % CI: +0.008, +0.450
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
- …
