340 research outputs found
Dynamics of one-dimensional tight-binding models with arbitrary time-dependent external homogeneous fields
The exact propagators of two one-dimensional systems with time-dependent
external fields are presented by following the path-integral method. It is
shown that the Bloch acceleration theorem can be generalized to the
impulse-momentum theorem in quantum version. We demonstrate that an evolved
Gaussian wave packet always keeps its shape in an arbitrary time-dependent
homogeneous driven field. Moreover, that stopping and accelerating of a wave
packet can be achieved by the pulsed field in a diabatic way.Comment: 8 pages, 6 figure
Quantum internet using code division multiple access
A crucial open problem in large-scale quantum networks is how to efficiently
transmit quantum data among many pairs of users via a common data-transmission
medium. We propose a solution by developing a quantum code division multiple
access (q-CDMA) approach in which quantum information is chaotically encoded to
spread its spectral content, and then decoded via chaos synchronization to
separate different sender-receiver pairs. In comparison to other existing
approaches, such as frequency division multiple access (FDMA), the proposed
q-CDMA can greatly increase the information rates per channel used, especially
for very noisy quantum channels.Comment: 29 pages, 6 figure
Topologically Protected Quantum State Transfer in a Chiral Spin Liquid
Topology plays a central role in ensuring the robustness of a wide variety of
physical phenomena. Notable examples range from the robust current carrying
edge states associated with the quantum Hall and the quantum spin Hall effects
to proposals involving topologically protected quantum memory and quantum logic
operations. Here, we propose and analyze a topologically protected channel for
the transfer of quantum states between remote quantum nodes. In our approach,
state transfer is mediated by the edge mode of a chiral spin liquid. We
demonstrate that the proposed method is intrinsically robust to realistic
imperfections associated with disorder and decoherence. Possible experimental
implementations and applications to the detection and characterization of spin
liquid phases are discussed.Comment: 14 pages, 7 figure
Delocalized single-photon Dicke states and the Leggett- Garg inequality in solid state systems
We show how to realize a single-photon Dicke state in a large one-dimensional
array of two- level systems, and discuss how to test its quantum properties.
Realization of single-photon Dicke states relies on the cooperative nature of
the interaction between a field reservoir and an array of two-level-emitters.
The resulting dynamics of the delocalized state can display Rabi-like
oscillations when the number of two-level emitters exceeds several hundred. In
this case the large array of emitters is essentially behaving like a
mirror-less cavity. We outline how this might be realized using a
multiple-quantum-well structure and discuss how the quantum nature of these
oscillations could be tested with the Leggett-Garg inequality and its
extensions.Comment: 29 pages, 5 figures, journal pape
Quantum Simulation of Spin Chains Coupled to Bosonic Modes with Superconducting Circuits
We propose the implementation of a digital quantum simulation of spin chains
coupled to bosonic field modes in superconducting circuits. Gates with high
fidelities allows one to simulate a variety of Ising magnetic pairing
interactions with transverse field, Tavis-Cummings interaction between spins
and a bosonic mode, and a spin model with three-body terms. We analyze the
feasibility of the implementation in realistic circuit quantum electrodynamics
setups, where the interactions are either realized via capacitive couplings or
mediated by microwave resonators.Comment: Chapter in R. S. Anderssen et al. (eds.), Mathematics for Industry 11
(Springer Japan, 2015
Holonomic surface codes for fault-tolerant quantum computation
© 2018 American Physical Society. Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation
Coupling Superconducting Qubits via a Cavity Bus
Superconducting circuits are promising candidates for constructing quantum
bits (qubits) in a quantum computer; single-qubit operations are now routine,
and several examples of two qubit interactions and gates having been
demonstrated. These experiments show that two nearby qubits can be readily
coupled with local interactions. Performing gates between an arbitrary pair of
distant qubits is highly desirable for any quantum computer architecture, but
has not yet been demonstrated. An efficient way to achieve this goal is to
couple the qubits to a quantum bus, which distributes quantum information among
the qubits. Here we show the implementation of such a quantum bus, using
microwave photons confined in a transmission line cavity, to couple two
superconducting qubits on opposite sides of a chip. The interaction is mediated
by the exchange of virtual rather than real photons, avoiding cavity induced
loss. Using fast control of the qubits to switch the coupling effectively on
and off, we demonstrate coherent transfer of quantum states between the qubits.
The cavity is also used to perform multiplexed control and measurement of the
qubit states. This approach can be expanded to more than two qubits, and is an
attractive architecture for quantum information processing on a chip.Comment: 6 pages, 4 figures, to be published in Natur
Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box
Under appropriate conditions, superconducting electronic circuits behave
quantum mechanically, with properties that can be designed and controlled at
will. We have realized an experiment in which a superconducting two-level
system, playing the role of an artificial atom, is strongly coupled to a single
photon stored in an on-chip cavity. We show that the atom-photon coupling in
this circuit can be made strong enough for coherent effects to dominate over
dissipation, even in a solid state environment. This new regime of matter light
interaction in a circuit can be exploited for quantum information processing
and quantum communication. It may also lead to new approaches for single photon
generation and detection.Comment: 8 pages, 4 figures, accepted for publication in Nature, embargo does
apply, version with high resolution figures available at:
http://www.eng.yale.edu/rslab/Andreas/content/science/PubsPapers.htm
Superconducting charge qubits : the roles of self and mutual inductances
2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Landauer-Büttiker formula for time-dependent transport through resonant-tunneling structures : a nonequilibrium Green’s function approach
2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
- …
