50 research outputs found

    Risk of liver cancer in patients with hepatitis B or C

    Get PDF
    Key Messages1. Among hepatitis B virus carriers, infection with genotype C significantly increases the risk of developing hepatocellular cancer compared to those without this genotype.2. Among hepatitis C virus carriers, infection with genotype 1b increases the risk of hepatocellular cancer two fold compared to controls without this genotype.3. Such increased risk should be explained as risk over and above the existing risk associated with each infection.4. Hepatitis C virus genotypes1a and 2a are associated with decreased risk of hepatocellular cancer.published_or_final_versio

    Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model

    Get PDF
    Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities

    Lessons from Peer Support Among Individuals with Mental Health Difficulties: A Review of the Literature

    Get PDF
    We conducted a comprehensive narrative review and used a systematic search strategy to identify studies related to peer support among adults with mental health difficulties. The purposes of this review were to describe the principles, effects and benefits of peer support documented in the published literature, to discuss challenging aspects of peer support and to investigate lessons from peer support. Fifty-one studies, including 8 review articles and 19 qualitative studies, met the inclusion criteria for this review. Most of the challenges for peer support were related to “role” and “relationship” issues; that is, how peer support providers relate to people who receive peer support and how peer support providers are treated in the system. The knowledge gained from peer support relationships, such as mutual responsibility and interdependence, might be a clue toward redefining the helper-helper relationship as well as the concepts of help and support

    Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites

    Full text link
    ABSTRACT: A brand-new type of multifunctional nanocomposites with high DC conductivity and enhanced mechanical strength was fabricated. Ionic liquid functionalized Carbon Nanotubes (CNTs-IL) were embedded into epoxy matrix with covalent bonding by the attached epoxy groups. The highest DC conductivity was 8.38 × 10–3 S.m–1 with 1.0 wt. (%) loading of CNTs-IL and the tensile strength was increased by 36.4% only at a 0.5 wt. (%) concentration. A mixing solvent was used to disperse CNTs-IL in the epoxy monomer. The dispersion and distribution of CNTs-IL in the polymer matrix were measured by utilizing both optical microscopy and scanning electron microscopy, respectivelyCOL009969

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Microsatellite instability and novel mismatch repair gene mutations in northern Chinese population with hereditary non-polyposis colorectal cancer.

    No full text
    OBJECTIVE: Hereditary non-polyposis colorectal cancer (HNPCC) syndrome is the most common cause of hereditary colorectal cancer with an early age of onset. Microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found in the majority of HNPCC families and provide an opportunity for genetic diagnosis and prophylactic screening. The MMR gene mutation spectrum may vary across different populations and be influenced by founder mutations that prevail in specific ethnic groups. China is a big and ancient nation with enormous genetic diversity, which is especially notable between the northern and southern Chinese populations. A MMR gene mutation database for the southern Chinese population based in Hong Kong has been previously established. This study compares the MMR gene mutation spectrum and the MSI of HNPCC between the northern and southern Chinese populations. METHODS: Twenty-five HNPCC families from northern China were systematically analyzed. The MSI analysis was performed using five loci in the USA National Cancer Institute (NCI) panel (D2S123, D5S346, BAT-25, BAT-26 and BAT-40) by PCR from the tumor and normal tissue. MSH2, MSH6 and MLH1 were performed using immunohistochemical staining. Two founder mutations of MSH2 and MLH1 were examined by PCR base analyses using primers flanking the two deletion sites (c.1452_1455delAATG in MSH2 and 1.8 kb deletion involving exon 11 of MLH1). RESULTS: Of the 25 families collected, 19 met Bethesda guideline (BG) 1 and six met BG3. Twenty-two (15.7%) were extra-colonic cancers with gastric cancer (in seven patients) being the most common cancer type. Of the 25 tumors analyzed, 21 (84%) were high level microsatellite instability (MSI-H) and four (16%) were microsatellite stable (MSS). Eighteen (86%) of the 21 MSI-H tumors showed loss of either the MLH1 or the MSH2 protein. Three MSI-H tumors and all four MSS tumors showed no loss of expression of the three MMR proteins. Out of the 21 patients with MSI-H tumors, 12 (57%) showed pathogenic germline mutations in either MLH1 (n = 8) or MSH2 (n = 4). Overall, three novel mutations (in patients H22, H17 and H29) have been identified. One of them, c.503_4insA, caused a frameshift mutation in the MLH1 gene. The other two were found in the MSH2 gene, including a frameshift (c.899_890insAT) and a splice junction (IVS7-1G-->A, SA of Exon 8) mutation. CONCLUSIONS: The results suggest a distinctly different mutation spectrum of MMR genes between northern and southern Chinese populations and call for a systematic, nationwide study to facilitate the design of a MMR gene mutation detection strategy tailored for individual populations in China.link_to_subscribed_fulltex

    Mapping networks of physical interactions between genomic elements using 5C technology

    No full text
    Genomic elements separated by large genomic distances can physically interact to mediate long-range gene regulation and other chromosomal processes. Interactions between genomic elements can be detected using the chromosome conformation capture (3C) technology. We recently developed a high-throughput adaptation of 3C, 3C-carbon copy (5C), that is used to measure networks of millions of chromatin interactions in parallel. As in 3C, cells are treated with formaldehyde to cross-link chromatin interactions. The chromatin is solubilized, digested with a restriction enzyme and ligated at low DNA concentration to promote intra-molecular ligation of cross-linked DNA fragments. Ligation products are subsequently purified to generate a 3C library. The 5C technology then employs highly multiplexed ligation-mediated amplification (LMA) to detect and amplify 3C ligation junctions. The resulting 5C library of ligated primers is analyzed using either microarray detection or ultra-high-throughput DNA sequencing. The 5C protocol described here can be completed in 13 d
    corecore