867 research outputs found
The Maryland Construction Trust Statute: New Personal Liability — Its Scope and Federal Bankruptcy Implications
A Review of the Maryland Construction Trust Statute Decisions in the Court of Appeals of Maryland and the United States Bankruptcy Court for the District of Maryland
The Maryland Construction Trust Statute: New Personal Liability — Its Scope and Federal Bankruptcy Implications
A Review of the Maryland Construction Trust Statute Decisions in the Court of Appeals of Maryland and the United States Bankruptcy Court for the District of Maryland
Unmasking the Hidden Curriculum: How It Negatively Impacts the One-Shot Model and First-Generation Lower-Income Students
Phenomenological Consequences of sub-leading Terms in See-Saw Formulas
Several aspects of next-to-leading (NLO) order corrections to see-saw
formulas are discussed and phenomenologically relevant situations are
identified. We generalize the formalism to calculate the NLO terms developed
for the type I see-saw to variants like the inverse, double or linear see-saw,
i.e., to cases in which more than two mass scales are present. In the standard
type I case with very heavy fermion singlets the sub-leading terms are
negligible. However, effects in the percent regime are possible when
sub-matrices of the complete neutral fermion mass matrix obey a moderate
hierarchy, e.g. weak scale and TeV scale. Examples are cancellations of large
terms leading to small neutrino masses, or inverse see-saw scenarios. We
furthermore identify situations in which no NLO corrections to certain
observables arise, namely for mu-tau symmetry and cases with a vanishing
neutrino mass. Finally, we emphasize that the unavoidable unitarity violation
in see-saw scenarios with extra fermions can be calculated with the formalism
in a straightforward manner.Comment: 22 pages, matches published versio
Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE
Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE
Neutrino Masses and Mixing: Evidence and Implications
Measurements of various features of the fluxes of atmospheric and solar
neutrinos have provided evidence for neutrino oscillations and therefore for
neutrino masses and mixing. We review the phenomenology of neutrino
oscillations in vacuum and in matter. We present the existing evidence from
solar and atmospheric neutrinos as well as the results from laboratory
searches, including the final status of the LSND experiment. We describe the
theoretical inputs that are used to interpret the experimental results in terms
of neutrino oscillations. We derive the allowed ranges for the mass and mixing
parameters in three frameworks: First, each set of observations is analyzed
separately in a two-neutrino framework; Second, the data from solar and
atmospheric neutrinos are analyzed in a three active neutrino framework; Third,
the LSND results are added, and the status of accommodating all three signals
in the framework of three active and one sterile light neutrinos is presented.
We review the theoretical implications of these results: the existence of new
physics, the estimate of the scale of this new physics and the lessons for
grand unified theories, for supersymmetric models with R-parity violation, for
models of extra dimensions and singlet fermions in the bulk, and for flavor
models.Comment: Added note on the effects of KamLAND results. Two new figure
- …
