263 research outputs found
Antimony doping of Si layers grown by solid-phase epitaxy
We report here that layers of Si formed by solid-phase epitaxial growth (SPEG) can be doped intentionally. The sample consists initially of an upper layer of amorphous Si (~1 µm thick), a very thin intermediate layer of Sb (nominally 5 Å), and a thin lower layer of Pd (~500 Å), all electron-gun deposited on top of a single-crystal substrate (1–10 Ω cm, p type, orientation). After a heating cycle which induces epitaxial growth, electrically active Sb atoms are incorporated into the SPEG layer, as shown by the following facts: (a) the SPEG layer forms a p-n junction against the p-type substrate, (b) the Hall effect indicates strong n-type conduction of the layer, and (c) Auger electron spectra reveal the presence of Sb in the layer
Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors
We investigate the application of hierarchical classification schemes to the
annotation of gene function based on several characteristics of protein
sequences including phylogenic descriptors, sequence based attributes, and
predicted secondary structure. We discuss three Bayesian models and compare
their performance in terms of predictive accuracy. These models are the
ordinary multinomial logit (MNL) model, a hierarchical model based on a set of
nested MNL models, and a MNL model with a prior that introduces correlations
between the parameters for classes that are nearby in the hierarchy. We also
provide a new scheme for combining different sources of information. We use
these models to predict the functional class of Open Reading Frames (ORFs) from
the E. coli genome. The results from all three models show substantial
improvement over previous methods, which were based on the C5 algorithm. The
MNL model using a prior based on the hierarchy outperforms both the
non-hierarchical MNL model and the nested MNL model. In contrast to previous
attempts at combining these sources of information, our approach results in a
higher accuracy rate when compared to models that use each data source alone.
Together, these results show that gene function can be predicted with higher
accuracy than previously achieved, using Bayesian models that incorporate
suitable prior information
A survey of assistive technologies and applications for blind users on mobile platforms: a review and foundation for research
This paper summarizes recent developments in audio and tactile
feedback based assistive technologies targeting the blind
community. Current technology allows applications to be
efficiently distributed and run on mobile and handheld
devices, even in cases where computational requirements are
significant. As a result, electronic travel aids, navigational
assistance modules, text-to-speech applications, as well as
virtual audio displays which combine audio with haptic
channels are becoming integrated into standard mobile devices.
This trend, combined with the appearance of increasingly user-
friendly interfaces and modes of interaction has opened a
variety of new perspectives for the rehabilitation and
training of users with visual impairments. The goal of this
paper is to provide an overview of these developments based on
recent advances in basic research and application development.
Using this overview as a foundation, an agenda is outlined for
future research in mobile interaction design with respect to
users with special needs, as well as ultimately in relation to
sensor-bridging applications in genera
Interaction of Al layers with polycrystalline Si
Auger electron spectroscopy, MeV 4He + backscattering spectrometry and scanning electron microscopy have been used to investigate interactions between Al films and polycrystalline layers of CVD Si deposited on SiO2. Depth profiling techniques showed that intermixing of the Al and Si occurred in the 400–560 °C temperature range (i.e., below the eutectic). Dissolution of the poly Si into the Al film occurs followed by nucleation and growth of Si crystallites in the Al film. The morphology of the final structure depends on the relative thicknesses of the as-deposited Al and Si layers. In the case of the original Al thickness being greater than that of the Si, the Si forms large precipitates in the Al matrix. For Al layers thinner than those of the Si, a nearly continuous Si film is formed on the outer surface. The thickness of this final Si film is approximately that of the original Al layer. The remaining Si and the Al form a two-phase layer between the outer Si film and the SiO2 substrate
Characterisation of a 3-hydroxypropionic acid-inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidus necator
3-hydroxypropionic acid (3-HP) is an important platform chemical used as a precursor for production of added-value compounds such as acrylic acid. Metabolically engineered yeast, Escherichia coli, cyanobacteria and other microorganisms have been developed for the biosynthesis of 3-HP. Attempts to overproduce this compound in recombinant Pseudomonas denitrificans revealed that 3-HP is consumed by this microorganism using the catabolic enzymes encoded by genes hpdH, hbdH and mmsA. 3-HP-inducible systems controlling the expression of these genes have been predicted in proteobacteria and actinobacteria. In this study, we identify and characterise 3-HP-inducible promoters and their corresponding LysR-type transcriptional regulators from Pseudomonas putida KT2440. A newly-developed modular reporter system proved possible to demonstrate that PpMmsR/PmmsA and PpHpdR/PhpdH are orthogonal and highly inducible by 3-HP in E. coli (12.3- and 23.3-fold, respectively) and Cupriavidus necator (51.5- and 516.6-fold, respectively). Bioinformatics and mutagenesis analyses revealed a conserved 40-nucleotide sequence in the hpdH promoter, which plays a key role in HpdR-mediated transcription activation. We investigate the kinetics and dynamics of the PpHpdR/PhpdH switchable system in response to 3-HP and show that it is also induced by both enantiomers of 3-hydroxybutyrate. These findings pave the way for use of the 3-HP-inducible system in synthetic biology and biotechnology applications
The Complete Genome Sequence of Escherichia coli EC958: A High Quality Reference Sequence for the Globally Disseminated Multidrug Resistant E. coli O25b:H4-ST131 Clone
Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage
Interplay of Protein and DNA Structure Revealed in Simulations of the lac Operon
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information. © 2013 Czapla et al
Solid-phase crystallization of Si films in contact with Al layers
Low-temperature (400–540 °C) crystallization of amorphous and polycrystalline Si films deposited on SiO2 and covered with an evaporated Al layer has been studied using SEM, TEM, electron diffraction, electron channeling, and MeV 4He + backscattering. Silicon deposited by evaporation and chemical vapor deposition (CVD) at 640 °C (both amorphous) was found to crystallize into islands of polycrystalline aggregates. Silicon deposited by CVD at 900 °C (polycrystalline with ~2000-Å grains) produced relatively large (~10 µm) single-crystal islands. In both cases island size increased with annealing time, and the rate of crystallization increased with temperature. Crystallization rates were observed to be the same for both sources of amorphous Si, while 900 °C CVD Si was noticeably slower, consistent with the postulate that the driving force for the reaction is the free-energy difference between initial and final states. The crystallization rate for 900 °C CVD Si decreased when the Al layer thickness was reduced to a value less than the initial Si grain size. The inclusion of a native oxide layer between the deposited Si and Al layers greatly retarded the crystallization process
Promoter analysis by saturation mutagenesis
Gene expression and regulation are mediated by DNA sequences, in most instances, directly upstream to the coding sequences by recruiting transcription factors, regulators, and a RNA polymerase in a spatially defined fashion. Few nucleotides within a promoter make contact with the bound proteins. The minimal set of nucleotides that can recruit a protein factor is called a cis-acting element. This article addresses a powerful mutagenesis strategy that can be employed to define cis-acting elements at a molecular level. Technical details including primer design, saturation mutagenesis, construction of promoter libraries, phenotypic analysis, data analysis, and interpretation are discussed
Signature-Tagged Mutagenesis in a Chicken Infection Model Leads to the Identification of a Novel Avian Pathogenic Escherichia coli Fimbrial Adhesin
The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first report of the newly identified and functionally characterized ExPEC adhesin I and its significant role during APEC infection in chickens
- …
