3,772 research outputs found
The Hubble Space Telescope high speed photometer
The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected
Digital Signal Processing
Contains research objectives and summary of research on seven research projects.Joint Services Electronics Program (Contract DAAB07-76-C-1400)U. S. Navy - Office of Naval Research (Contract N00014-75-C-0951-NR 049-308)National Science Foundation (Grant ENG71-02319-AO2
Polarized interacting exciton gas in quantum wells and bulk semiconductors
We develop a theory to calculate exciton binding energies of both two- and
three-dimensional spin polarized exciton gases within a mean field approach.
Our method allows the analysis of recent experiments showing the importance of
the polarization and intensity of the excitation light on the exciton
luminescence of GaAs quantum wells. We study the breaking of the spin
degeneracy observed at high exciton density . Energy
level splitting betwen spin +1 and spin -1 is shown to be due to many-body
inter-excitonic exchange while the spin relaxation time is controlled by
intra-exciton exchange.Comment: Revtex, 4 figures sent by fax upon request by e-mai
Digital Signal Processing
Contains research objectives and summary of research on seven research projects.U. S. Navy Office of Naval Research (Contract N00014-75-C-0951)National Science Foundation (Grant ENG71-02319-A02
Comparison of Requirements for Composite Structures for Aircraft and Space Applications
In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged
Spin injection and spin accumulation in all-metal mesoscopic spin valves
We study the electrical injection and detection of spin accumulation in
lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin
valve devices with transparent interfaces. Different ferromagnetic metals,
permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin
injectors and detectors. For the nonmagnetic metal both aluminium (Al) and
copper (Cu) are used. Our multi-terminal geometry allows us to experimentally
separate the spin valve effect from other magneto resistance signals such as
the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR
contribution of the ferromagnetic contacts can dominate the amplitude of the
spin valve effect, making it impossible to observe the spin valve effect in a
'conventional' measurement geometry. In a 'non local' spin valve measurement we
are able to completely isolate the spin valve signal and observe clear spin
accumulation signals at T=4.2 K as well as at room temperature (RT). For
aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm
at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350
nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory
and results obtained from giant magneto resistance (GMR), conduction electron
spin resonance (CESR), anti-weak localization and superconducting tunneling
experiments. The spin valve signals generated by the Py electrodes (alpha_F
lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes
(alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F
lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are
compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR
HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma
Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3β-hydroxysteroid dehydrogenase-1 (3β-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3β-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention
- …
