737 research outputs found

    A Fermi Fluid Description of the Half-Filled Landau Level

    Full text link
    We present a many-body approach to calculate the ground state properties of a system of electrons in a half-filled Landau level. Our starting point is a simplified version of the recently proposed trial wave function where one includes the antisymmetrization operator to the bosonic Laughlin state. Using the classical plasma analogy, we calculate the pair-correlation function, the static structure function and the ground state energy in the thermodynamic limit. These results are in good agreement with the expected behavior at ν=12\nu=\frac12.Comment: 4 pages, REVTEX, and 4 .ps file

    Finite-Wavevector Electromagnetic Response of Fractional Quantized Hall States

    Full text link
    A fractional quantized Hall state with filling fraction ν=p/(2mp+1)\nu = p/(2mp+1) can be modeled as an integer quantized Hall state of transformed fermions, interacting with a Chern-Simons field. The electromagnetic response function for these states at arbitrary frequency and wavevector can be calculated using a semiclassical approximation or the Random Phase Approximation (RPA). However, such calculations do not properly take into account the large effective mass renormalization which is present in the Chern-Simons theory. We show how the mass renormalization can be incorporated in a calculation of the response function within a Landau Fermi liquid theory approach such that Kohn's theorem and the ff-sum rules are properly satisfied. We present results of such calculations.Comment: 19 pages (REVTeX 3.0), 5 figures available on request; HU-CMT-93S0

    Counting defects with the two-point correlator

    Full text link
    We study how topological defects manifest themselves in the equal-time two-point field correlator. We consider a scalar field with Z_2 symmetry in 1, 2 and 3 spatial dimensions, allowing for kinks, domain lines and domain walls, respectively. Using numerical lattice simulations, we find that in any number of dimensions, the correlator in momentum space is to a very good approximation the product of two factors, one describing the spatial distribution of the defects and the other describing the defect shape. When the defects are produced by the Kibble mechanism, the former has a universal form as a function of k/n, which we determine numerically. This signature makes it possible to determine the kink density from the field correlator without having to resort to the Gaussian approximation. This is essential when studying field dynamics with methods relying only on correlators (Schwinger-Dyson, 2PI).Comment: 11 pages, 7 figures

    Charge Induced Vortex Lattice Instability

    Full text link
    It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for, high temperature superconductors.\cite{kho95,bla96} Hall effect\cite{hag91} and nuclear magnetic resonance (NMR) experiments\cite{kum01} suggest the existence of vortex charging, but the effects are small and the interpretation controversial. Here we show that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at sufficiently high magnetic field if there is charge trapped on the vortex core. Our NMR measurements of the magnetic fields generated by vortices in Bi2_{2}Sr2_{2}CaCu2_{2}O8+y_{8+y} single crystals\cite{che07} provide evidence for an electrostatically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of 2\mathbf{\sim 2}x103e\mathbf{10^{-3} e}, depending on doping, in line with theoretical estimates.\cite{kho95,kna05}Comment: to appear in Nature Physics; 6 pages, 7 figure

    Defect-unbinding transitions and inherent structures in two dimensions

    Full text link
    We present a large-scale (36000-particle) computational study of the "inherent structures" (IS) associated with equilibrium, two-dimensional, one-component Lennard-Jones systems. Our results provide strong support both for the inherent-structures theory of classical fluids, and for the KTHNY theory of two-stage melting in two dimensions. This support comes from the observation of three qualitatively distinct "phases" of inherent structures: a crystal, a "hexatic glass", and a "liquid glass". We also directly observe, in the IS, analogs of the two defect-unbinding transitions (respectively, of dislocations, and disclinations) believed to mediate the two equilibrium phase transitions. Each transition shows up in the inherent structures---although the free disclinations in the "liquid glass" are embedded in a percolating network of grain boundaries. The bond-orientational correlation functions of the inherent structures show the same progressive loss of order as do the three equilibrium phases: long-range to quasi-long-range to short-range.Comment: RevTeX, 8 pages, 15 figure

    Veneziano Ghost Versus Isospin Breaking

    Full text link
    It is argued that an account for the Veneziano ghost pole, appearing in resolving the U(1) problem, is necessary for understanding an isospin violation in the πηη \pi - \eta - \eta' system. By virtue of a perturbative expansion around the SU(2)V SU(2)_{V} ( mu=md m_{u} = m_{d} ) symmetric Veneziano solution, we find that the ghost considerably suppresses isospin breaking gluon and s-quark matrix elements. We speculate further on a few cases where the proposed mechanism can play an essential role. We discuss the isospin violation in meson-nucleon couplings and its relevance to the problem of charge asymmetric nuclear forces and possible breaking of the Bjorken sum rule. It is shown that the ghost pole could yield the isospin violation of order 2 \% for the πN \pi N couplings and 20 \% for the Bjorken sum rule.Comment: 16 pages , Preprint TAUP-2127-9

    Anyons in a weakly interacting system

    Full text link
    We describe a theoretical proposal for a system whose excitations are anyons with the exchange phase pi/4 and charge -e/2, but, remarkably, can be built by filling a set of single-particle states of essentially noninteracting electrons. The system consists of an artificially structured type-II superconducting film adjacent to a 2D electron gas in the integer quantum Hall regime with unit filling fraction. The proposal rests on the observation that a vacancy in an otherwise periodic vortex lattice in the superconductor creates a bound state in the 2DEG with total charge -e/2. A composite of this fractionally charged hole and the missing flux due to the vacancy behaves as an anyon. The proposed setup allows for manipulation of these anyons and could prove useful in various schemes for fault-tolerant topological quantum computation.Comment: 7 pages with 3 figures. For related work and info visit http://www.physics.ubc.ca/~fran

    Ising Expansion for the Hubbard Model

    Full text link
    We develop series expansions for the ground state properties of the Hubbard model, by introducing an Ising anisotropy into the Hamiltonian. For the two-dimensional (2D) square lattice half-filled Hubbard model, the ground state energy, local moment, sublattice magnetization, uniform magnetic susceptibility and spin stiffness are calculated as a function of U/tU/t, where UU is the Coulomb constant and tt is the hopping parameter. Magnetic susceptibility data indicate a crossover around U4U\approx 4 between spin density wave antiferromagnetism and Heisenberg antiferromagnetism. Comparisons with Monte Carlo simulations, RPA result and mean field solutions are also made.Comment: 22 pages, 6 Postscript figures, Revte

    New Chiral Phases of Superfluid 3He Stabilized by Anisotropic Silica Aerogel

    Get PDF
    A rich variety of Fermi systems condense by forming bound pairs, including high temperature [1] and heavy fermion [2] superconductors, Sr2RuO4 [3], cold atomic gases [4], and superfluid 3He [5]. Some of these form exotic quantum states having non-zero orbital angular momentum. We have discovered, in the case of 3He, that anisotropic disorder, engineered from highly porous silica aerogel, stabilizes a chiral superfluid state that otherwise would not exist. Additionally, we find that the chiral axis of this state can be uniquely oriented with the application of a magnetic field perpendicular to the aerogel anisotropy axis. At suffciently low temperature we observe a sharp transition from a uniformly oriented chiral state to a disordered structure consistent with locally ordered domains, contrary to expectations for a superfluid glass phase [6].Comment: 6 pages, 4 figure, and Supplementary Informatio

    High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots

    Full text link
    We measure the high magnetic field (BB) microwave conductivity, Reσxx\sigma_{xx}, of a high mobility 2D electron system containing an antidot array. Reσxx\sigma_{xx} vs frequency (ff) increases strongly in the regime of the fractional quantum Hall effect series, with Landau filling 1/3<ν<2/31/3<\nu<2/3. At microwave ff, Reσxx\sigma_{xx} vs BB exhibits a broad peak centered around ν=1/2\nu=1/2. On the peak, the 10 GHz Reσxx\sigma_{xx} can exceed its dc-limit value by a factor of 5. This enhanced microwave conductivity is unobservable for temperature T0.5T \gtrsim 0.5 K, and grows more pronounced as TT is decreased. The effect may be due to excitations supported by the antidot edges, but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex
    corecore