756 research outputs found
First Results from the CHARA Array. II. A Description of the Instrument
The CHARA Array is a six 1-m telescope optical/IR interferometric array
located on Mount Wilson California, designed and built by the Center for High
Angular Resolution Astronomy of Georgia State University. In this paper we
describe the main elements of the Array hardware and software control systems
as well as the data reduction methods currently being used. Our plans for
upgrades in the near future are also described
Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees
The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe
What Do You Mean I\u27m a Lobbyist: New Government Contractor Restrictions and What They Will Mean for Banking Institutions
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Socialization, Role Attainment and Stigma Management in BDSM
This research focuses on the methods of introduction into BDSM, role identification, and the management of private information as it relates to BDSM. The method utilized for this study was in-depth interviews of fifteen current participants in the BDSM subculture. It is primarily through peer association, sexual scripting, and impression management that new members are introduced, learn their role, and manage their information within the BDSM subculture. It was found that peer association is the primary method of socializing members. Role identification is accomplished through both a method of sexual scripting as well as complimentary differentiation, the process by which a stimulus is transmitted and received, and subsequent stimuli are transmitted back, reinterpreted and responded to. It is through impression management and stigma management that members learn to maintain the privacy of their participation. Future research should include additional analysis with a larger sample size to determine if the current findings will continue to hold true
Effects of baroclinicity on storm divergence and stratiform rain in a precipitating subtropical region
Divergence structures associated with the spectrum of precipitating systems in
the subtropics and midlatitudes are not well documented. A mesoscale model (MM5) is
employed to quantify the relative importance different baroclinic environments have on
divergence profiles for common storm types in southeast Texas, a subtropical region.
Divergence profiles averaged over a 100 x 100 nested grid with 3-km grid spacing are
calculated from the model-derived wind fields for each storm. The divergence profiles
simulated for selected storms are consistent with those calculated from an S-band radar
using the velocity-azimuth display (VAD) technique.
Divergence profiles from well-modeled storms vary in magnitude and structure
across the spectrum of baroclinicities and storm types common in southeast Texas.
Barotropic storms more characteristic of the Tropics generate the most elevated
divergence (and thus diabatic heating) structures with the largest magnitudes. As the
degree of baroclinicity increases, stratiform area fractions increase while the levels of
non-divergence (LNDs) decrease. However, some weakly baroclinic storms contain
stratiform area fractions and divergence profiles with magnitudes and LNDs that are similar to barotropic storms, despite having lower tropopause heights and less deep
convection. Additional convection forms after the passage of some of the modeled
barotropic and weakly baroclinic storms that contain elevated divergence signatures,
circumstantially suggesting that heating at upper-levels may cause diabatic feedbacks
that help drive regions of persistent convection in the subtropics.
Applying a two-dimensional stratiform-convective separation algorithm to MM5
reflectivity data generates realistic stratiform and convective divergence signals.
Stratiform regions in barotropic storms contain thicker, more elevated mid-level
convergence structures with larger magnitudes than strongly baroclinic storms, while
weakly baroclinic storms have LNDs that fall somewhere in between with magnitudes
similar to barotropic storms. Divergence profiles within convective regions typically
become more elevated as baroclinicity decreases, although variations in magnitude are
less coherent. These simulations suggest that MM5 adequately captures mass field
perturbations within convective and stratiform regions, the latter of which produces
diabatic feedbacks capable of generating additional convection. As a result, future
research determining the climatological dynamic response caused by divergence profiles
in MM5 may be feasible
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Viking Afterbody Heating Computations and Comparisons to Flight Data
Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/sq cm for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/sq cm, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8-species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods
- …
