2,411 research outputs found
Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience
Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues
Informal Agency Rulemaking and the Courts: A Theory for Procedural Rreview
This Article will demonstrate that judicial review of agency rulemaking procedures, if properly structured, is an acceptable and important tool for the control of regulatory policy-making. The procedural discretion of administrative rulemakers should not be as broad as Vermont Yankee suggests. The first part of this Article will identify the procedural values which should serve as normative guides to the adequacy and legitimacy of informal rulemaking. The second part will examine the Supreme Court\u27s opinion in Vermont Yankee, criticizing its approach to procedural review of informal rulemaking as a threat to the integrity of that rulemaking process. In the third section of the Article, the judicial and scholarly reactions to Vermont Yankee will be examined and critiqued. It is clear that neither the courts nor the commentators have yet succeeded in developing an approach to procedural review of informal rulemaking which adequately responds to the problems created by Vermont Yankee. The Article will conclude with a suggested theory for procedural review of informal rulemaking. This theory will present an instrumental interpretation of section 553 of the APA which establishes the minimum procedural requirements needed to preserve the procedural values that insure the integrity of informal rulemaking. The theory will also outline a method and supporting rationale for judicial review of the discretionary procedural decisions of agency rulemakers—decisions by agencies to employ (or not employ) additional rulemaking procedures beyond those minimally required by the APA
Mass and Angular Momentum Transfer in the Massive Algol Binary RY Persei
We present an investigation of H-alpha emission line variations observed in
the massive Algol binary, RY Per. We give new radial velocity data for the
secondary based upon our optical spectra and for the primary based upon high
dispersion UV spectra. We present revised orbital elements and an estimate of
the primary's projected rotational velocity (which indicates that the primary
is rotating 7 times faster than synchronous). We use a Doppler tomography
algorithm to reconstruct the individual primary and secondary spectra in the
region of H-alpha, and we subtract the latter from each of our observations to
obtain profiles of the primary and its disk alone. Our H-alpha observations of
RY Per show that the mass gaining primary is surrounded by a persistent but
time variable accretion disk. The profile that is observed outside-of-eclipse
has weak, double-peaked emission flanking a deep central absorption, and we
find that these properties can be reproduced by a disk model that includes the
absorption of photospheric light by the band of the disk seen in projection
against the face of the star. We developed a new method to reconstruct the disk
surface density distribution from the ensemble of H-alpha profiles observed
around the orbit, and this method accounts for the effects of disk occultation
by the stellar components, the obscuration of the primary by the disk, and flux
contributions from optically thick disk elements. The resulting surface density
distribution is elongated along the axis joining the stars, in the same way as
seen in hydrodynamical simulations of gas flows that strike the mass gainer
near trailing edge of the star. This type of gas stream configuration is
optimal for the transfer of angular momentum, and we show that rapid rotation
is found in other Algols that have passed through a similar stage.Comment: 39 pages, 12 figures, ApJ in press, 2004 June 20 issu
Sovereign Immunity - An Argument Pro
The Ohio Doctrine of Sovereign Immunity vis-a-vis the United States Constitution, fourteenth amendment, will hereinafter be considered. Before delving into the constitutional realities, however, the substance of this narrow discussion should be placed in perspective with the multifarious civil actions arising out of the Kent State tragedy, May 4, 1970
Tomographic Separation of Composite Spectra. VIII. The Physical Properties of the Massive Compact Binary in the Triple Star System HD 36486 (delta Orionis A)
Double-lined spectroscopic orbital elements have recently been found for the
central binary in the massive triple, delta Orionis A based on radial
velocities from cross-correlation techniques applied to IUE high dispersion
spectra and He I 6678 spectra obtained at Kitt Peak. The primary and secondary
velocity amplitudes were found to be 94.9 +/- 0.6 km/s and 186 +/- 9 km/s
respectively. Tomographic reconstructions of the primary and secondary stars'
spectra confirm the O9.5 II classification of the primary and indicate a B0.5
III type for the secondary. The widths of the UV cross-correlation functions
are used to estimate the projected rotational velocities, Vsin i = 157 +/- 6
km/s and 138 +/- 16 km/s for the primary and secondary, respectively implying
that both stars rotate faster than their orbital motion. We used the
spectroscopic results to make a constrained fit of the Hipparcos light curve of
this eclipsing binary, and the model fits limit the inclination to the range
between 67 and 77 degrees. The i = 67 degrees solution, which corresponds to a
near Roche-filling configuration, results in a primary mass of 11.2 solar
masses and a secondary mass of 5.6 solar masses, both of which are
substantially below the expected masses for stars of their luminosity. This
binary may have experienced a mass ratio reversal caused by Case A Roche lobe
overflow, or the system may have suffered extensive mass loss through a binary
interaction, perhaps during a common envelope phase, in which most of the
primary's mass was lost from the system rather than transferred to the
secondary.Comment: 27 pages, 15 figures in press, the Astrophysical Journal, February 1,
200
Energy-efficient scheduling of flexible flow shop of composite recycling
Composite recycling technologies have been developed to tackle the increasing use of composites in industry and as a result of restrictions placed on landfill disposal. Mechanical, thermal and chemical approaches are the existing main recycling techniques to recover the fibres. Some optimisation work for reducing energy consumed by above processes has also been developed. However, the resource efficiency of recycling composites at the workshop level has never been considered before. Considering the current trend of designing and optimising a system in parallel and the future needs of the composite recycling business, a flexible flow shop for carbon fibre reinforced composite recycling is modelled. Optimisation approaches based on non-dominated sorting genetic algorithm II (NSGA-II) have been developed to reduce the time and energy consumed for processing composite wastes by searching for the optimal sub-lot splitting and resource scheduling plans. Case studies on different composite recycling scenarios have been conducted to prove the feasibility of the model and the developed algorithm
Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.
A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease
Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity
Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria
A review of physical supply and EROI of fossil fuels in China
This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found
- …
