298 research outputs found

    Coronal Diagnostics from Narrowband Images around 30.4 nm

    Full text link
    Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He II Ly alpha line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona the contribution from the nearby Si XI 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si XI line dominates the He II line from just above the limb up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic

    Cold gas accretion in galaxies

    Get PDF
    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: 1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by HI cloud complexes, tails and filaments. It may be regarded as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI have been found in nearby spiral galaxies. While a large fraction of this gas is produced by galactic fountains, it is likely that a part of it is of extragalactic origin. 3) Spirals are known to have extended and warped outer layers of HI. It is not clear how these have formed, and how and for how long the warps can be sustained. Gas infall has been proposed as the origin. 4) The majority of galactic disks are lopsided in their morphology as well as in their kinematics. Also here recent accretion has been advocated as a possible cause. In our view, accretion takes place both through the arrival and merging of gas-rich satellites and through gas infall from the intergalactic medium (IGM). The infall may have observable effects on the disk such as bursts of star formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates needed to sustain the observed star formation (~1 Msol/yr), additional infall of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages. Full-resolution version available at http://www.astron.nl/~oosterlo/accretionRevie

    Star Formation Thresholds in Galactic Disks

    Get PDF
    We report the first results of a detailed study of the star formation law in a sample of 32 nearby spiral galaxies with well-measured rotation curves, HI and H2_2 (as traced by CO) surface density profiles, and new \Ha CCD photometry. Our results strongly support the view that the formation of gravitationally bound interstellar clouds regulates the onset of widespread star formation -- at least in the outer regions of galactic disks.Comment: Will appear in July 1 ApJ. Abbreviated abstract. Postscript version available at http://www.astro.caltech.edu/~clm

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear

    The effects of dust in simple environments: Large Magellanic Cloud HII regions

    Full text link
    We investigate the effects of dust on Large Magellanic Cloud (LMC) HII region spectral energy distributions using arcminute-resolution far-ultraviolet (FUV), H-alpha, far-infrared (FIR), and radio images. Widely-used indicators of the amount of light lost to dust (attenuation) at H-alpha and in the FUV correlate with each other, although often with substantial scatter. There are two interesting systematic discrepancies. First, H-alpha attenuations estimated from the Balmer decrement are lower than those estimated from the H-alpha-to-thermal radio luminosity ratio. Our data, at this stage, cannot unambiguously identify the source of this discrepancy. Second, the attenuation at 1500 angstroms and UV spectral slope, beta, correlate, although the slope and scatter are substantially different from the correlation first derived for starbursting galaxies by Calzetti et al. Combining our result with those of Meurer et al. for ultra-luminous infrared galaxies and Calzetti et al. for starbursting galaxies, we conclude that no single relation between beta and 1500 angstrom attenuation is applicable to all star-forming systems.Comment: 15 pages; 11 embedded postscript figures; 1 GIF figure; to appear in ApJ on 20 January 2002, vol. 565, no. 1. Section 5.1 (the discussion of the discrepancies between Balmer-derived and Radio-derived H alpha attenuations) has changed considerably to take into account small number statistics for high-mass stars in the model HII region IMFs. The abstract and conclusions have been modifie

    Theory of Dyakonov-Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material

    Full text link
    In order to ascertain conditions for surface-wave propagation guided by the planar interface of an isotropic dielectric material and a sculptured nematic thin film (SNTF) with periodic nonhomogeneity, we formulated a boundary-value problem, obtained a dispersion equation therefrom, and numerically solved it. The surface waves obtained are Dyakonov-Tamm waves. The angular domain formed by the directions of propagation of the Dyakonov--Tamm waves can be very wide (even as wide as to allow propagation in every direction in the interface plane), because of the periodic nonhomogeneity of the SNTF. A search for Dyakonov-Tamm waves is, at the present time, the most promising route to take for experimental verification of surface-wave propagation guided by the interface of two dielectric materials, at least one of which is anisotropic. That would also assist in realizing the potential of such surface waves for optical sensing of various types of analytes infiltrating one or both of the two dielectric materials.Comment: accepted for publication in J. Opt.

    The Interacting Dwarf Galaxy NGC 3077: The Interplay of Atomic and Molecular Gas with Violent Star Formation

    Get PDF
    We present a comprehensive multi-wavelength study of the nearby interacting dwarf galaxy NGC3077 (member of the M81 triplet). High resolution VLA HI observations show that most of the atomic gas (~90%) around NGC3077 is situated in a prominent tidal arm with a complex velocity structure. Little HI (~5 x 10^7 M_sun) is associated with NGC3077 itself. High resolution OVRO observations of the molecular component (CO) reveal the presence of 16 molecular complexes near the center of NGC3077 (total mass: ~1.6 x 10^6 M_sun). A virial mass analysis of the individual complexes yields a lower CO-to-H_2 conversion factor in NGC3077 than the Galactic value - a surprising result for a dwarf galaxy. The total (atomic and molecular) gas content in the centre of NGC3077 is displaced from the stellar component of NGC3077 -- this implies that not only the gas at large galactocentric radii is affected by the interaction within the triplet but also the center. We speculate that the starburst activity of NGC3077 was triggered by this redistribution of gas in the center. Some of these supershells are surrounded by neutral hydrogen. In a few cases, the rims of the ionized supershells are associated with dust absorption. The most prominent star forming region in NGC3077 as probed by Pa-alpha observations is hidden behind a dust cloud which is traced by the molecular complexes. Correcting for extinction we derive a star forming rate of 0.05 M_sun year^-1, i.e. given the reservoir in atomic and molecular gas in NGC3077, star formation may proceed at a similar rate for a few 10^8 years. The efficiency to form stars out of molecular gas in NGC3077 is similar to that in M82.Comment: accepted for publication in the Astronomical Journal. Full paper with figures available at http://www.astro.caltech.edu/~fw/ngc3077.ps.g

    Feasibility study of computed tomography colonography using limited bowel preparation at normal and low-dose levels study

    Get PDF
    The purpose was to evaluate low-dose CT colonography without cathartic cleansing in terms of image quality, polyp visualization and patient acceptance. Sixty-one patients scheduled for colonoscopy started a low-fiber diet, lactulose and amidotrizoic-acid for fecal tagging 2 days prior to the CT scan (standard dose, 5.8–8.2 mSv). The original raw data of 51 patients were modified and reconstructed at simulated 2.3 and 0.7 mSv levels. Two observers evaluated the standard dose scan regarding image quality and polyps. A third evaluated the presence of polyps at all three mSv levels in a blinded prospective way. All observers were blinded to the reference standard: colonoscopy. At three times patients were given questionnaires relating to their experiences and preference. Image quality was sufficient in all patients, but significantly lower in the cecum, sigmoid and rectum. The two observers correctly identified respectively 10/15 (67%) and 9/15 (60%) polyps ≥10 mm, with 5 and 8 false-positive lesions (standard dose scan). Dose reduction down to 0.7 mSv was not associated with significant changes in diagnostic value (polyps ≥10 mm). Eighty percent of patients preferred CT colonography and 13% preferred colonoscopy (P<0.001). CT colonography without cleansing is preferred to colonoscopy and shows sufficient image quality and moderate sensitivity, without impaired diagnostic value at dose-levels as low as 0.7 mSv
    corecore