2,429 research outputs found
Inventory of wetlands and agricultural land cover in the upper Sevier River Basin, Utah
The use of color infrared aerial photography in the mapping of agricultural land use and wetlands in the Sevier River Basin of south central utah is described. The efficiency and cost effectiveness of utilizing LANDSAT multispectral scanner digital data to augment photographic interpretations are discussed. Transparent overlays for 27 quadrangles showing delineations of wetlands and agricultural land cover were produced. A table summarizing the acreage represented by each class on each quadrangle overlay is provided
Irrigated acreage in the Bear River Basin as of the 1975 growing season
The irrigated cropland in the Bear River Basin as of the 1975 growing season was inventoried from satellite imagery. LANDSAT color infrared images (scale 1:125,000) were examined for early, mid, and late summer dates, and acreage was estimated by use of township/section overlays. The total basin acreage was estimated to be 573,435 acres, with individual state totals as follows: Idaho 234,370 acres; Utah 265,505 acres; and Wyoming 73,560 acres. As anticipated, wetland areas intermingled among cropland appears to have produced an over-estimation of irrigated acreage. According to a 2% random sample of test sites evaluated by personnel from the Soil Conservation Service such basin-wide over-estimation is 7.5%; individual counties deviate significantly from the basin-wide figure, depending on the relative amount of wetland areas intermingled with cropland
Recommended from our members
The influence of the accessory genome on bacterial pathogen evolution
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions
Parity-odd domains, corresponding to non-trivial topological solutions of the
QCD vacuum, might be created during relativistic heavy-ion collisions. These
domains are predicted to lead to charge separation of quarks along the orbital
momentum of the system created in non-central collisions. To study this effect,
we investigate a three particle mixed harmonics azimuthal correlator which is a
\P-even observable, but directly sensitive to the charge separation effect. We
report measurements of this observable using the STAR detector in Au+Au and
Cu+Cu collisions at =200 and 62~GeV. The results are presented
as a function of collision centrality, particle separation in rapidity, and
particle transverse momentum. A signal consistent with several of the
theoretical expectations is detected in all four data sets. We compare our
results to the predictions of existing event generators, and discuss in detail
possible contributions from other effects that are not related to parity
violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review
C
Inclusive charged hadron elliptic flow in Au + Au collisions at = 7.7 - 39 GeV
A systematic study is presented for centrality, transverse momentum ()
and pseudorapidity () dependence of the inclusive charged hadron elliptic
flow () at midrapidity() in Au+Au collisions at
= 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with
different methods, including correlations with the event plane reconstructed in
a region separated by a large pseudorapidity gap and 4-particle cumulants
(), are presented in order to investigate non-flow correlations and
fluctuations. We observe that the difference between and
is smaller at the lower collision energies. Values of , scaled by
the initial coordinate space eccentricity, , as a function
of are larger in more central collisions, suggesting stronger collective
flow develops in more central collisions, similar to the results at higher
collision energies. These results are compared to measurements at higher
energies at the Relativistic Heavy Ion Collider ( = 62.4 and 200
GeV) and at the Large Hadron Collider (Pb + Pb collisions at =
2.76 TeV). The values for fixed rise with increasing collision
energy within the range studied (). A comparison to
viscous hydrodynamic simulations is made to potentially help understand the
energy dependence of . We also compare the results to UrQMD
and AMPT transport model calculations, and physics implications on the
dominance of partonic versus hadronic phases in the system created at Beam
Energy Scan (BES) energies are discussed.Comment: 20 pages, 12 figures. Version accepted by PR
Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
We report first results from an analysis based on a new multi-hadron
correlation technique, exploring jet-medium interactions and di-jet surface
emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons
are used for triggers to study associated hadron distributions. In contrast
with two- and three-particle correlations with a single trigger with similar
kinematic selections, the associated hadron distribution of both trigger sides
reveals no modification in either relative pseudo-rapidity or relative
azimuthal angle from d+Au to central Au+Au collisions. We determine associated
hadron yields and spectra as well as production rates for such correlated
back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
Identified high- spectra in Cu+Cu collisions at =200 GeV
We report new results on identified (anti)proton and charged pion spectra at
large transverse momenta (3<<10 GeV/c) from Cu+Cu collisions at
=200 GeV using the STAR detector at the Relativistic Heavy Ion
Collider (RHIC). This study explores the system size dependence of two novel
features observed at RHIC with heavy ions: the hadron suppression at
high- and the anomalous baryon to meson enhancement at intermediate
transverse momenta. Both phenomena could be attributed to the creation of a new
form of QCD matter. The results presented here bridge the system size gap
between the available pp and Au+Au data, and allow the detailed exploration for
the on-set of the novel features. Comparative analysis of all available 200 GeV
data indicates that the system size is a major factor determining both the
magnitude of the hadron spectra suppression at large transverse momenta and the
relative baryon to meson enhancement.Comment: Submitted to Phys. Rev. C, 9 pages, 5 figure
Measurement of open charm production in +Au collisions at =200 GeV
We present the first comprehensive measurement of and
their charge conjugate states at mid-rapidity in +Au collisions at
=200 GeV using the STAR TPC. The directly measured open charm
multiplicity distribution covers a broad transverse momentum region of
0 GeV/. The measured at mid-rapidity for is
and the measured
and ratios are approximately equal with a magnitude of . The total cross section per
nucleon-nucleon collision extracted from this study is mb. The direct measurement of open charm production is
consistent with STAR single electron data. This cross section is higher than
expectations from PYTHIA and other pQCD calculations. The measured
distribution is harder than the pQCD prediction using the Peterson
fragmentation function.Comment: Quark Matter 2004 Proceeding
Measurements of and Production in + Collisions at = 200 GeV
We report measurements of charmed-hadron (, ) production cross
sections at mid-rapidity in + collisions at a center-of-mass energy of
200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the
hadronic decays , and their charge conjugates,
covering the range of 0.62.0 GeV/ and 2.06.0 GeV/ for
and , respectively. From this analysis, the charm-pair production cross
section at mid-rapidity is = 170 45
(stat.) (sys.) b. The extracted charm-pair cross section is
compared to perturbative QCD calculations. The transverse momentum differential
cross section is found to be consistent with the upper bound of a Fixed-Order
Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.
- …
