26,911 research outputs found
The Arches Cluster: Extended Structure and Tidal Radius
At a projected distance of ~26 pc from Sgr A*, the Arches cluster provides
insight to star formation in the extreme Galactic Center (GC) environment.
Despite its importance, many key properties such as the cluster's internal
structure and orbital history are not well known. We present an astrometric and
photometric study of the outer region of the Arches cluster (R > 6.25") using
HST WFC3IR. Using proper motions we calculate membership probabilities for
stars down to F153M = 20 mag (~2.5 M_sun) over a 120" x 120" field of view, an
area 144 times larger than previous astrometric studies of the cluster. We
construct the radial profile of the Arches to a radius of 75" (~3 pc at 8 kpc),
which can be well described by a single power law. From this profile we place a
3-sigma lower limit of 2.8 pc on the observed tidal radius, which is larger
than the predicted tidal radius (1 - 2.5 pc). Evidence of mass segregation is
observed throughout the cluster and no tidal tail structures are apparent along
the orbital path. The absence of breaks in the profile suggests that the Arches
has not likely experienced its closest approach to the GC between ~0.2 - 1 Myr
ago. If accurate, this constraint indicates that the cluster is on a prograde
orbit and is located front of the sky plane that intersects Sgr A*. However,
further simulations of clusters in the GC potential are required to interpret
the observed profile with more confidence.Comment: 24 pages (17-page main text, 7-page appendix), 24 figures, accepted
to Ap
A nonstationary form of the range refraction parabolic equation and its application as an artificial boundary condition for the wave equation in a waveguide
The time-dependent form of Tappert's range refraction parabolic equation is
derived using Daletskiy-Krein formula form noncommutative analysis and proposed
as an artificial boundary condition for the wave equation in a waveguide. The
numerical comparison with Higdon's absorbing boundary conditions shows
sufficiently good quality of the new boundary condition at low computational
cost.Comment: 12 pages, 9 figure
Measurements of the fluctuation-induced in-plane magnetoconductivity at high reduced temperatures and magnetic fields in the iron arsenide BaFe(2-x)NixAs2
The superconducting fluctuations well inside the normal state of Fe-based
superconductors were studied through measurements of the in-plane
paraconductivity and magnetoconductivity in high quality BaFe(2-x)NixAs2
crystals with doping levels from the optimal (x=0.10) up to the highly
overdoped (x=0.20). These measurements, performed in magnetic fields up to 9 T
perpendicular to the ab (Fe) layers, allowed a reliable check of the
applicability to iron-based superconductors of Ginzburg-Landau approaches for
3D anisotropic compounds, even at high reduced temperatures and magnetic
fields. Our results also allowed us to gain valuable insights into the
dependence on the doping level of some central superconducting parameters
(coherence lengths and anisotropy factor).Comment: 23 pages including 6 figure
Bootstrap Confidence Regions for Optimal Operating Conditions in Response Surface Methodology
This article concerns the application of bootstrap methodology to construct a likelihood-based confidence region for operating conditions associated with the maximum of a response surface constrained to a specified region. Unlike classical methods based on the stationary point, proper interpretation of this confidence region does not depend on unknown model parameters. In addition, the methodology does not require the assumption of normally distributed errors. The approach is demonstrated for concave-down and saddle system cases in two dimensions. Simulation studies were performed to assess the coverage probability of these regions.
AMS 2000 subj Classification: 62F25, 62F40, 62F30, 62J05.
Key words: Stationary point; Kernel density estimator; Boundary kernel
ARHI (DIRAS 3), an Imprinted Tumor Suppressor Gene, Binds to Importins, and Blocks Nuclear Translocation of Stat3
ARHI (DIRAS3) is an imprinted tumor suppressor gene whose expression is lost in the majority of breast and ovarian cancers. Unlike its homologs Ras and Rap, ARHI functions as a tumor suppressor. Our previous study showed that ARHI can interact with transcription activator Stat3 and inhibit its nuclear translocation in human breast and ovarian cancer cells. To identify proteins that interact with ARHI in nuclear translocation, we have performed proteomic analysis and identified several importins that can associate with ARHI. To further explore this novel finding, we have purified 10 GST-importin fusion proteins (importin 7, 8, 13, b1, a1, a3, a5, a6, a7 as well as mutant a1). Using a GST-pull down assay, we found that ARHI can bind strongly to most importins; however, its binding is significantly reduced with an importin a1 mutant which contains an altered nuclear localization signal (NLS) domain. In addition, an ARHI N-terminal deletion mutant (NTD) exhibits much less binding to all importins than does wild type ARHI ARHI and NTD proteins were purified and tested for their ability to inhibit nuclear importation of proteins in HeLa cells. ARHI protein inhibits interaction of Ran-importin complexes with GFP fusion proteins that contain an NLS domain and a beta-like import receptor binding domain, blocking their nuclear localization. Addition of ARHI also blocked nuclear localization of phosphorylated Stat3β. By GST-pull down assays, we found that ARHI could compete for Ran-importins binding. Thus, ARHI-induced disruption of importin binding to cargo proteins including Stat3 could serve as an important regulatory mechanism that contributes to the tumor suppressor function of ARHI
- …
