5,097 research outputs found
Convolutional and tail-biting quantum error-correcting codes
Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to
4096 states and minimum distances up to 10 are constructed as stabilizer codes
from classical self-orthogonal rate-1/n F_4-linear and binary linear
convolutional codes, respectively. These codes generally have higher rate and
less decoding complexity than comparable quantum block codes or previous
quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same
rate and error-correction capability and essentially the same decoding
algorithms are derived from these convolutional codes via tail-biting.Comment: 30 pages. Submitted to IEEE Transactions on Information Theory. Minor
revisions after first round of review
Projection-Based 2.5D U-net Architecture for Fast Volumetric Segmentation
Convolutional neural networks are state-of-the-art for various segmentation
tasks. While for 2D images these networks are also computationally efficient,
3D convolutions have huge storage requirements and require long training time.
To overcome this issue, we introduce a network structure for volumetric data
without 3D convolutional layers. The main idea is to include maximum intensity
projections from different directions to transform the volumetric data to a
sequence of images, where each image contains information of the full data. We
then apply 2D convolutions to these projection images and lift them again to
volumetric data using a trainable reconstruction algorithm.The proposed network
architecture has less storage requirements than network structures using 3D
convolutions. For a tested binary segmentation task, it even shows better
performance than the 3D U-net and can be trained much faster.Comment: presented at the SAMPTA 2019 conferenc
Gamma-ray halos as a measure of intergalactic magnetic fields: a classical moment problem
The presence of weak intergalactic magnetic fields can be studied by their
effect on electro-magnetic cascades induced by multi-TeV gamma-rays in the
cosmic radiation background. Small deflections of secondary electrons and
positrons as the cascade develops extend the apparent size of the emission
region of distant TeV gamma-ray sources. These gamma-ray halos can be
resolvable in imaging atmospheric Cherenkov telescopes and serve as a measure
of the intergalactic magnetic field strength and coherence length. We present a
method of calculating the gamma-ray halo for isotropically emitting sources by
treating magnetic deflections in the cascade as a diffusion process. With this
ansatz the moments of the halo follow from a set of simple diffusion-cascade
equations. The reconstruction of the angular distribution is then equivalent to
a classical moment problem. We present a simple solution using Pade
approximations of the moment's generating function.Comment: 12 pages, 6 figure
Theory of decoherence in a matter wave Talbot-Lau interferometer
We present a theoretical framework to describe the effects of decoherence on
matter waves in Talbot-Lau interferometry. Using a Wigner description of the
stationary beam the loss of interference contrast can be calculated in closed
form. The formulation includes both the decohering coupling to the environment
and the coherent interaction with the grating walls. It facilitates the
quantitative distinction of genuine quantum interference from the expectations
of classical mechanics. We provide realistic microscopic descriptions of the
experimentally relevant interactions in terms of the bulk properties of the
particles and show that the treatment is equivalent to solving the
corresponding master equation in paraxial approximation.Comment: 20 pages, 4 figures (minor corrections; now in two-column format
Critical dynamics of an isothermal compressible non-ideal fluid
A pure fluid at its critical point shows a dramatic slow-down in its
dynamics, due to a divergence of the order-parameter susceptibility and the
coefficient of heat transport. Under isothermal conditions, however, sound
waves provide the only possible relaxation mechanism for order-parameter
fluctuations. Here we study the critical dynamics of an isothermal,
compressible non-ideal fluid via scaling arguments and computer simulations of
the corresponding fluctuating hydrodynamics equations. We show that, below a
critical dimension of 4, the order-parameter dynamics of an isothermal fluid
effectively reduces to "model A," characterized by overdamped sound waves and a
divergent bulk viscosity. In contrast, the shear viscosity remains finite above
two dimensions. Possible applications of the model are discussed.Comment: 19 pages, 7 figures; v3: minor corrections and clarifications; as
published in Phys. Rev.
The -theorem and the Asymptotics of 4D Quantum Field Theory
We study the possible IR and UV asymptotics of 4D Lorentz invariant unitary
quantum field theory. Our main tool is a generalization of the
Komargodski-Schwimmer proof for the -theorem. We use this to rule out a
large class of renormalization group flows that do not asymptote to conformal
field theories in the UV and IR. We show that if the IR (UV) asymptotics is
described by perturbation theory, all beta functions must vanish faster than
as (). This implies that the
only possible asymptotics within perturbation theory is conformal field theory.
In particular, it rules out perturbative theories with scale but not conformal
invariance, which are equivalent to theories with renormalization group
pseudocycles. Our arguments hold even for theories with gravitational
anomalies. We also give a non-perturbative argument that excludes theories with
scale but not conformal invariance. This argument holds for theories in which
the stress-energy tensor is sufficiently nontrivial in a technical sense that
we make precise.Comment: 41 pages, 2 figures. v2: Arguments clarified, some side comments
corrected, connection to previous work by Jack and Osborn described,
conclusions unaffecte
Closed-loop separation control over a sharp edge ramp using Genetic Programming
We experimentally perform open and closed-loop control of a separating
turbulent boundary layer downstream from a sharp edge ramp. The turbulent
boundary layer just above the separation point has a Reynolds number
based on momentum thickness. The goal of the
control is to mitigate separation and early re-attachment. The forcing employs
a spanwise array of active vortex generators. The flow state is monitored with
skin-friction sensors downstream of the actuators. The feedback control law is
obtained using model-free genetic programming control (GPC) (Gautier et al.
2015). The resulting flow is assessed using the momentum coefficient, pressure
distribution and skin friction over the ramp and stereo PIV. The PIV yields
vector field statistics, e.g. shear layer growth, the backflow area and vortex
region. GPC is benchmarked against the best periodic forcing. While open-loop
control achieves separation reduction by locking-on the shedding mode, GPC
gives rise to similar benefits by accelerating the shear layer growth.
Moreover, GPC uses less actuation energy.Comment: 24 pages, 24 figures, submitted to Experiments in Fluid
Country differences in the diagnosis and management of coronary heart disease : a comparison between the US, the UK and Germany
Background
The way patients with coronary heart disease (CHD) are treated is partly determined by non-medical factors. There is a solid body of evidence that patient and physician characteristics influence doctors' management decisions. Relatively little is known about the role of structural issues in the decision making process. This study focuses on the question whether doctors' diagnostic and therapeutic decisions are influenced by the health care system in which they take place. This non-medical determinant of medical decision-making was investigated in an international research project in the US, the UK and Germany.
Methods
Videotaped patients within an experimental study design were used. Experienced actors played the role of patients with symptoms of CHD. Several alternative versions were taped featuring the same script with patients of different sex, age and social status. The videotapes were shown to 384 randomly selected primary care physicians in the three countries under study. The sample was stratified on gender and duration of professional experience. Physicians were asked how they would diagnose and manage the patient after watching the video vignette using a questionnaire with standardised and open-ended questions.
Results
Results show only small differences in decision making between British and American physicians in essential aspects of care. About 90% of the UK and US doctors identified CHD as one of the possible diagnoses. Further similarities were found in test ordering and lifestyle advice. Some differences between the US and UK were found in the certainty of the diagnoses, prescribed medications and referral behaviour. There are numerous significant differences between Germany and the other two countries. German physicians would ask fewer questions, they would order fewer tests, prescribe fewer medications and give less lifestyle advice.
Conclusion
Although all physicians in the three countries under study were presented exactly the same patient, some disparities in the diagnostic and patient management decisions were evident. Since other possible influences on doctors treatment decisions are controlled within the experimental design, characteristics of the health care system seem to be a crucial factor within the decision making process
- …
