101 research outputs found
Association between gene expression biomarkers of immunosuppression and blood transfusion in severely injured polytrauma patients.
Advances in Global and Local Helioseismology: an Introductory Review
Helioseismology studies the structure and dynamics of the Sun's interior by
observing oscillations on the surface. These studies provide information about
the physical processes that control the evolution and magnetic activity of the
Sun. In recent years, helioseismology has made substantial progress towards the
understanding of the physics of solar oscillations and the physical processes
inside the Sun, thanks to observational, theoretical and modeling efforts. In
addition to the global seismology of the Sun based on measurements of global
oscillation modes, a new field of local helioseismology, which studies
oscillation travel times and local frequency shifts, has been developed. It is
capable of providing 3D images of the subsurface structures and flows. The
basic principles, recent advances and perspectives of global and local
helioseismology are reviewed in this article.Comment: 86 pages, 46 figures; "Pulsation of the Sun and Stars", Lecture Notes
in Physics, Vol. 832, Rozelot, Jean-Pierre; Neiner, Coralie (Eds.), 201
Two-dimensional spatial power spectra of photospheric velocity fluctuations
Two-dimensional spatial autocorrelation functions and power spectral density distributions were obtained from high-resolution velocity spectroheliograms. Although the autocorrelation functions indicate the existence of velocity cells of size roughly 2500 to 3500 km, the power spectra fail to reveal them because the cells are not strictly spatially periodic.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43736/1/11207_2004_Article_BF00162429.pd
An Estimation of Erinaceidae Phylogeny: A Combined Analysis Approach
BACKGROUND: Erinaceidae is a family of small mammals that include the spiny hedgehogs (Erinaceinae) and the silky-furred moonrats and gymnures (Galericinae). These animals are widely distributed across Eurasia and Africa, from the tundra to the tropics and the deserts to damp forests. The importance of these animals lies in the fact that they are the oldest known living placental mammals, which are well represented in the fossil record, a rarity fact given their size and vulnerability to destruction during fossilization. Although the Family has been well studied, their phylogenetic relationships remain controversial. To test previous phylogenetic hypotheses, we combined molecular and morphological data sets, including representatives of all the genera. METHODOLOGY AND PRINCIPAL FINDINGS: We included in the analyses 3,218 bp mitochondrial genes, one hundred and thirty-five morphological characters, twenty-two extant erinaceid taxa, and five outgroup taxa. Phylogenetic relationships were reconstructed using both partitioned and combined data sets. As in previous analyses, our results strongly support the monophyly of both subfamilies (Galericinae and Erinaceinae), the Hylomys group (to include Neotetracus and Neohylomys), and a sister-relationship of Atelerix and Erinaceus. As well, we verified that the extremely long branch lengths within the Galericinae are consistent with their fossil records. Not surprisingly, we found significant incongruence between the phylogenetic signals of the genes and the morphological characters, specifically in the case of Hylomys parvus, Mesechinus, and relationships between Hemiechinus and Paraechinus. CONCLUSIONS: Although we discovered new clues to understanding the evolutionary relationships within the Erinaceidae, our results nonetheless, strongly suggest that more robust analyses employing more complete taxon sampling (to include fossils) and multiple unlinked genes would greatly enhance our understanding of the Erinaceidae. Until then, we have left the nomenclature of the taxa unchanged; hence it does not yet precisely reflect their phylogenetic relationships or the depth of their genetic diversity
Plio-Pleistocene climatic change had a major impact on the assembly and disassembly processes of Iberian rodent communities
Comprehension of changes in community composition through multiple spatio-temporal scales is a prime challenge in ecology and palaeobiology. However, assembly, structuring and disassembly of biotic metacommunities in deep-time is insufficiently known. To address this, we used the extensively sampled Iberian Plio-Pleistocene fossil record of rodent faunas as our model system to explore how global climatic events may alter metacommunity structure. Through factor analysis, we found five sets of genera, called faunal components, which co-vary in proportional diversity over time. These faunal components had different spatio-temporal distributions throughout the Plio-Pleistocene, resulting in non-random changes in species assemblages, particularly in response to the development of the Pleistocene glaciations. Three successive metacommunities with distinctive taxonomic structures were identified as a consequence of the differential responses of their members to global climatic change: (1) Ruscinian subtropical faunas (5.3–3.4 Ma) dominated by a faunal component that can be considered as a Miocene legacy; (2) transition faunas during the Villafranchian–Biharian (3.4–0.8 Ma) with a mixture of different faunal components; and (3) final dominance of the temperate Toringian faunas (0.8–0.01 Ma) that would lead to the modern Iberian assemblage. The influence of the cooling global temperature drove the reorganisation of these rodent metacommunities. Selective extinction processes due to this large-scale environmental disturbance progressively eliminated the subtropical specialist species from the early Pliocene metacommunity. This disassembly process was accompanied by the organisation of a diversified metacommunity with an increased importance of biome generalist species, and finally followed by the assembly during the middle–late Pleistocene of a new set of species specialised in the novel environments developed as a consequence of the glaciations
Motives for early retirement of self-employed GPs in the Netherlands: a comparison of two time periods
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Distinct expression and function of carotenoid metabolic genes and homoeologs in developing wheat grains
The contribution from psychological, social, and organizational work factors to risk of disability retirement: a systematic review with meta-analyses
- …
