757 research outputs found
A perpetual switching system in pulmonary capillaries
Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics
Measurement of Conductivity and Charge Storage in Insulators Related to Spacecraft Charging
Improved experimental methods are discussed for laboratory measurement of conductivity and electric field in insulating spacecraft material intended for space radiation and plasma environments. These measurement techniques investigate the following features: 1) Measurements of conductivity are up to four orders of magnitude smaller than those determined by existing standard methods. 2) Conductivity is altered as radiation accumulates and trapping states fill with electrons. 3) With intense keV electron irradiation, electrons are continually emitted for hours from the irradiated surface after the irradiation ceases. 4) Charging induced by electron irradiation is strongly modified by the electron-hole pairs that the irradiation generates in the insulator. 5) High field effects at 106 V/cm act strongly on the electron-hole pairs and on electrons in shallow traps to provide extended conductivity. 6) The capacitance of the sample can be measured in the same apparatus along with the other testing. 7) Visible light can be used to investigate conduction by electrons (or holes) emitted from shallow trapping levels. The qualitative physics of such processes in solid dielectrics has long been known, and instrumentation is developed here for measuring the effects in practical spacecraft charging applications
Creating and probing long-range order in atomic clouds
Ultracold atoms interacting with the optical modes of a high-Q optical ring
cavity can synchronize their motion. The collective behavior makes the system
interesting for quantum computing applications. This paper is devoted to the
study of the collective coupling. We report on the first observation of a
collective dynamics and on the realization of a laser, the gain mechanism of
which is based on collective atomic recoil. We show that, if the atoms are
subject to a friction force, starting from an unordered distribution they
spontaneously form a moving density grating. Furthermore, we demonstrate that a
1D atomic density grating can be probed via Bragg scattering. By heterodyning
the Bragg-reflected light with a reference beam, we obtain detailed information
on phase shifts induced by the Bragg scattering process
High dispersal ability inhibits speciation in a continental radiation of passerine birds
Dispersal can stimulate speciation byfacilitating geographical expansion across barriers or inhibit speciation by maintaining gene flow among populations. Therefore, the relationship between dispersal ability and speciation rates can be positive or negative. Furthermore, an \u27intermediate dispersal\u27 model that combines positive and negative effects predicts a unimodal relationship between dispersal and diversification. Because both dispersal ability and speciation rates are difficult to quantify, empirical evidence for the relationship between dispersal and diversification remains scarce. Using a surrogate for flight performance and a species-level DNA-based phylogeny of a large South American bird radiation (the Furnariidae), we found that lineages with higher dispersal ability experienced lower speciation rates. We propose that the degree of fragmentation or permeability of the geographical setting together with the intermediate dispersal model are crucial in reconciling previous, often contradictory findings regarding the relationship between dispersal and diversification. © 2011 The Royal Society
Methods For High Resistivity Measurements Related To Spacecraft Charging
A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This parameter determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. ASTM constant voltage methods are shown to provide inaccurate resistivity measurements for materials with resistivities greater than ~1017 Ω-cm or with long polarization decay times such as are found in many polymers. These data have been shown to often be inappropriate for spacecraft charging applications, and have been found to underestimate charging effects by one to four orders of magnitude for many materials. The charge storage decay method is shown to be the preferred method to determine the resistivities of such highly insulating materials.
A review is presented of methods to measure the resistivity of highly insulating materials—including the electrometer-resistance method, the electrometer-constant voltage method, and the charge storage method. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple, macroscopic, physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications
Residential Water Meters as Edge Computing Nodes: Disaggregating End Uses and Creating Actionable Information at the Edge
We present a new, open source, computationally capable datalogger for collecting and analyzing high temporal resolution residential water use data. Using this device, execution of water end use disaggregation algorithms or other data analytics can be performed directly on existing, analog residential water meters without disrupting their operation, effectively transforming existing water meters into smart, edge computing devices. Computation of water use summaries and classified water end use events directly on the meter minimizes data transmission requirements, reduces requirements for centralized data storage and processing, and reduces latency between data collection and generation of decision-relevant information. The datalogger couples an Arduino microcontroller board for data acquisition with a Raspberry Pi computer that serves as a computational resource. The computational node was developed and calibrated at the Utah Water Research Laboratory (UWRL) and was deployed for testing on the water meter for a single-family residential home in Providence City, UT, USA. Results from field deployments are presented to demonstrate the data collection accuracy, computational functionality, power requirements, communication capabilities, and applicability of the system. The computational node’s hardware design and software are open source, available for potential reuse, and can be adapted to specific research needs
Recommended from our members
Dopamine Increases a Value-Independent Gambling Propensity
Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine’s role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options—a finding with implications for understanding a range of reward-related psychopathologies including addiction
HIV Treatment as Prevention: Debate and Commentary-Will Early Infection Compromise Treatment-as-Prevention Strategies?
Universal HIV testing and immediate antiretroviral therapy for infected individuals has been proposed as a way of reducing the transmission of HIV and thereby bringing the HIV epidemic under control. It is unclear whether transmission during early HIV infection—before individuals are likely to have been diagnosed with HIV and started on antiretroviral therapy—will compromise the effectiveness of treatment as prevention. This article presents two opposing viewpoints by Powers, Miller, and Cohen, and Williams and Dye, followed by a commentary by Fraser
Human blood autoantibodies in the detection of colorectal cancer
Colorectal cancer (CRC) is the second most common malignancy in the western world. Early detection and diagnosis of all cancer types is vital to improved prognosis by enabling early treatment when tumours should be both resectable and curable. Sera from 3 different cohorts; 42 sera (21 CRC and 21 matched controls) from New York, USA, 200 sera from Pittsburgh, USA (100 CRC and 100 controls) and 20 sera from Dundee, UK (10 CRC and 10 controls) were tested against a panel of multiple tumour-associated antigens (TAAs) using an optimised multiplex microarray system. TAA specific IgG responses were interpo- lated against the internal IgG standard curve for each sample. Individual TAA specific responses were examined in each cohort to determine cutoffs for a robust initial scoring method to establish sensitivity and specificity. Sensitivity and specificity of combinations of TAAs provided good discrimination between cancer-positive and normal serum. The overall sensitivity and specificity of the sample sets tested against a panel of 32 TAAs were 61.1% and 80.9% respectively for 6 antigens; p53, AFP, K RAS, Annexin, RAF1 and NY-CO16. Furthermore, the observed sensitivity in Pittsburgh sample set in different clinical stages of CRC;stageI(n=19),stageII(n=40),stageIII(n=34)andstageIV(n=6)wassimilar (73.6%, 75.0%, 73.5% and 83.3%, respectively), with similar levels of sensitivity for right and left sided CRC. We identified an antigen panel of sufficient sensitivity and specificity for early detection of CRC, based upon serum profiling of autoantibody response using a robust multiplex antigen microarray technology. This opens the possibility of a blood test for screening and detection of early colorectal cancer. However this panel will require further validation studies before they can be proposed for clinical practice
The effect of a supplementary ('Gist-based') information leaflet on colorectal cancer knowledge and screening intention: a randomized controlled trial.
Guided by Fuzzy Trace Theory, this study examined the impact of a 'Gist-based' leaflet on colorectal cancer screening knowledge and intentions; and tested the interaction with participants' numerical ability. Adults aged 45-59 years from four UK general practices were randomly assigned to receive standard information ('The Facts', n = 2,216) versus standard information plus 'The Gist' leaflet (Gist + Facts, n = 2,236). Questionnaires were returned by 964/4,452 individuals (22 %). 82 % of respondents reported having read the information, but those with poor numeracy were less likely (74 vs. 88 %, p < .001). The 'Gist + Facts' group were more likely to reach the criterion for adequate knowledge (95 vs. 91 %; p < .01), but this was not moderated by numeracy. Most respondents (98 %) intended to participate in screening, with no group differences and no interaction with numeracy. The improved levels of knowledge and self-reported reading suggest 'The Gist' leaflet may increase engagement with colorectal cancer screening, but ceiling effects reduced the likelihood that screening intentions would be affected
- …
