1,940 research outputs found

    A critical evaluation of automatic atom mapping algorithms and tools

    Get PDF
    The identification of the atoms which change their position in chemical reactions is an important knowledge within the field of Metabolic Engineering. This can lead to new advances at different levels from the reconstruction of metabolic networks to the classification of chemical reactions, through the identification of the atomic changes inside a reaction. The Atom Mapping approach was initially developed in the 1960s, but recently suffered important advances, being used in diverse biological and biotechnological studies. The main methodologies used for atom mapping are the Maximum Common Substructure and the Linear Optimization methods, which both require computational know-how and powerful resources to run the underlying tools. In this work, we assessed a number of previously implemented atom mapping frameworks, and built a framework able of managing the different data inputs and outputs, as well as the mapping process provided by each of these third-party tools. We evaluated the admissibility of the calculated atom maps from different algorithms, also assessing if with different approaches we were capable of returning equivalent atom maps for the same chemical reaction.ERDF -European Regional Development Fund(UID/BIO/04469/2013)info:eu-repo/semantics/publishedVersio

    Top mass dependent alpha_s^3 corrections to B-meson mixing in the MSSM

    Full text link
    We compute the top mass dependent NLO strong interaction matching conditions to the Delta F=2 effective Hamiltonian in the general MSSM. We study the relevance of such corrections, comparing its size with that of previously known NLO corrections in the limit mt->0, in scenarios with degeneracy, alignment, and hierarchical squarks. We find that, while these corrections are generally small, there are regions in the parameter space where the contributions to the Wilson coefficients C1 and C4 could partially overcome the expected suppression m_t/M_SUSY.Comment: 15 pages, 6 figure

    Clades and clans: a comparison study of two evolutionary models

    Get PDF
    The Yule-Harding-Kingman (YHK) model and the proportional to distinguishable arrangements (PDA) model are two binary tree generating models that are widely used in evolutionary biology. Understanding the distributions of clade sizes under these two models provides valuable insights into macro-evolutionary processes, and is important in hypothesis testing and Bayesian analyses in phylogenetics. Here we show that these distributions are log-convex, which implies that very large clades or very small clades are more likely to occur under these two models. Moreover, we prove that there exists a critical value κ(n)\kappa(n) for each n4n\geqslant 4 such that for a given clade with size kk, the probability that this clade is contained in a random tree with nn leaves generated under the YHK model is higher than that under the PDA model if 1<k<κ(n)1<k<\kappa(n), and lower if κ(n)<k<n\kappa(n)<k<n. Finally, we extend our results to binary unrooted trees, and obtain similar results for the distributions of clan sizes.Comment: 21page

    Infrared composition of the Large Magellanic Cloud

    Get PDF
    The evolution of galaxies and the history of star formation in the Universe are among the most important topics in today's astrophysics. Especially, the role of small, irregular galaxies in the star-formation history of the Universe is not yet clear. Using the data from the AKARI IRC survey of the Large Magellanic Cloud at 3.2, 7, 11, 15, and 24 {\mu}m wavelengths, i.e., at the mid- and near-infrared, we have constructed a multiwavelength catalog containing data from a cross-correlation with a number of other databases at different wavelengths. We present the separation of different classes of stars in the LMC in color-color, and color-magnitude, diagrams, and analyze their contribution to the total LMC flux, related to point sources at different infrared wavelengths

    Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice

    Get PDF
    Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts

    Get PDF
    Odour representations in insects undergo progressive transformations and decorrelatio from the receptor array to the presumed site of odour learning, the mushroom body. There, odours are represented by sparse assemblies of Kenyon cells in a large population. Using intracellular recordings in vivo, we examined transmission and plasticity at the synapse made by Kenyon cells onto downstream targets in locusts. We find that these individual synapses are excitatory and undergo hebbian spike-timing dependent plasticity (STDP) on a ±25 ms timescale. When placed in the context of odour-evoked Kenyon cell activity (a 20-Hz oscillatory population discharge), this form of STDP enhances the synchronization of the Kenyon cells’ targets and thus helps preserve the propagation of the odour-specific codes through the olfactory system

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT
    corecore