1,072 research outputs found
A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs
A number of novel programming languages and libraries have been proposed that
offer simpler-to-use models of concurrency than threads. It is challenging,
however, to devise execution models that successfully realise their
abstractions without forfeiting performance or introducing unintended
behaviours. This is exemplified by SCOOP---a concurrent object-oriented
message-passing language---which has seen multiple semantics proposed and
implemented over its evolution. We propose a "semantics workbench" with fully
and semi-automatic tools for SCOOP, that can be used to analyse and compare
programs with respect to different execution models. We demonstrate its use in
checking the consistency of semantics by applying it to a set of representative
programs, and highlighting a deadlock-related discrepancy between the principal
execution models of the language. Our workbench is based on a modular and
parameterisable graph transformation semantics implemented in the GROOVE tool.
We discuss how graph transformations are leveraged to atomically model
intricate language abstractions, and how the visual yet algebraic nature of the
model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear
Scaling of Entanglement close to a Quantum Phase Transitions
In this Letter we discuss the entanglement near a quantum phase transition by
analyzing the properties of the concurrence for a class of exactly solvable
models in one dimension. We find that entanglement can be classified in the
framework of scaling theory. Further, we reveal a profound difference between
classical correlations and the non-local quantum correlation, entanglement: the
correlation length diverges at the phase transition, whereas entanglement in
general remains short ranged.Comment: 4 pages, 4 figures, revtex. Stylistic changes and format modifie
Adult 'PICC' Device May be Used as a Tunnelled Central Venous Catheter in Children
Purpose: Central venous access in children, in particular small children and infants, is challenging. We have developed a technique employing adult peripherally inserted central venous catheters (PICCs) as tunnelled central venous catheters (TCVCs) in children. The principal advantage of this novel technique is that the removal technique is less complex than that of conventional cuffed TCVCs. The catheter can be removed simply by being pulled out and does not require general anaesthesia. The purpose of this study is to determine the success, safety and utility of this technique and to identify the rate of late complications. We describe the 6-year experience in our unit.Materials and methods: Electronic and paper medical records were reviewed for consecutive paediatric patients who had a PICC device inserted as a TCVC over a 6-year period (September 2009 through July 2015). The following data were recorded-patient demographics, setting for PICC as TCVC insertion, use of ultrasound and fluoroscopy, PICC device type, early or late complications and date of and reason for removal.Results: Twenty-one PICCs were inserted as TCVCs in 19 children, all aged less than 10 years. Mean patient age at the time of placement was 3.7 years. Average patient weight was 15.7 kg. All insertions were successful with no significant immediate complications recorded. The most common indication for insertion in our patient sample was pseudo-obstruction secondary to gastrointestinal dysmotility disorder (24%), with cystic fibrosis infective exacerbation being the second most frequent diagnosis (14%). Suspected catheter-related infection led to early device removal in one case (4.8%). Inadvertent dislodgement occurred in one case (4.8%). Nineteen of the 21 devices (90.4%) lasted for the total intended duration of use.Conclusion: Using a PICC device as a TCVC in small children appears to be a safe technique, with an acceptable complication profile.</p
Measuring subluxation of the hemiplegic shoulder: Reliability of a method
Objective: Subluxation of the shoulder after stroke can be measured according to the method described by Van Langenberghe and Hogan. Methods: To evaluate the reliability of this method, the shoulder radiographs of 25 patients were available for this study. Two independent raters each assessed these radiographs twice. Results: The intrarater reliability was good: percentage of agreement was 88 and 84%, weighted κ, 0.69 [95% confidence interval (CI), 0.38-1 0] and 0.78 (95% CI, 0.60-0.95) for raters 1 and 2, respectively. The interrater reliability was poor: percentage of agree ment was 36 and 28%, κ, 0.11 (95% CI, 0.0-0.31) and 0.09 (95% CI, 0.0-0.23) in sessions 1 and 2, respectively. Subsequently the original method was adjusted by com bining two categories (no subluxation and beginning subluxation) into one (“no clin ically important subluxation”). Conclusions: After this adjustment of the categories, the interrater reliability improved [percentage of agreement, 72%, and κ, 0.49 (95% CI, 0.18-0.80)], but did not reach acceptable values
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Hygienic characteristics of radishes grown in soil contaminated with Stenotrophomonas maltophilia
Background: Stenotrophomonas maltophilia is a plant growth-promoter. This bacterium is also implicated in human
diseases. Thus, after the use of this bacterium in agriculture, the safety of the final products has to be verified. Due to
the ubiquitous presence of S. maltophilia in soil, in this study a massive contamination was simulated to evaluate the
growth and safety of Raphanus sativus L..
Results: Different inoculums and soil treatment conditions were tested. Soils were analysed weekly and the radishes
at harvest for their microbial loads and presence/persistence of S. maltophilia LMG 6606. The concentration of the
bacterium added in the different trials decreased during the first week, but increased thereafter and determined a
significant increase of growth parameters of radishes.
Conclusions: The addition of S. maltophilia LMG 6606 to non-autoclaved soil enhanced the productivity of radishes.
The bacterium did not internalize in the hypocotyls, but colonized the external surface ensuring the safety of the
products. Thus, a sanitizing bath of hypocotyls before consumption is necessary
Endogenous antigen processing drives the primary CD4+ T cell response to influenza.
By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and γ-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses
Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution
BACKGROUND: The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. RESULTS: We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. CONCLUSIONS: Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Abundance of the Quorum-Sensing Factor Ax21 in Four Strains of Stenotrophomonas maltophilia Correlates with Mortality Rate in a New Zebrafish Model of Infection
Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence. Little is known about its pathogenesis and the genomic diversity exhibited by clinical isolates complicates the study of pathogenicity and virulence factors. Here, we present a strategy to identify such factors in new clinical isolates of S. maltophilia, incorporating an adult-zebrafish model of S. maltophilia infection to evaluate relative virulence coupled to 2D difference gel electrophoresis to explore underlying differences in protein expression. In this study we report upon three recent clinical isolates and use the collection strain ATCC13637 as a reference. The adult-zebrafish model shows discrimination capacity, i.e. from very low to very high mortality rates, with clinical symptoms very similar to those observed in natural S. maltophilia infections in fish. Strain virulence correlates with resistance to human serum, in agreement with previous studies in mouse and rat and therefore supporting zebrafish as a replacement model. Despite its clinical origin, the collection strain ATCC13637 showed obvious signs of attenuation in zebrafish, with null mortality. Multilocus-sequence-typing analysis revealed that the most virulent strains, UV74 and M30, exhibit the strongest genetic similitude. Differential proteomic analysis led to the identification of 38 proteins with significantly different abundance in the three clinical strains relative to the reference strain. Orthologs of several of these proteins have been already reported to have a role in pathogenesis, virulence or resistance mechanisms thus supporting our strategy. Proof of concept is further provided by protein Ax21, whose abundance is shown here to be directly proportional to mortality in the zebrafish infection model. Indeed, recent studies have demonstrated that this protein is a quorum-sensing-related virulence factor
- …
