962 research outputs found
The origin of galaxy scaling laws in LCDM
It has long been recognized that tight relations link the mass, size, and
characteristic velocity of galaxies. These scaling laws reflect the way in
which baryons populate, cool, and settle at the center of their host dark
matter halos; the angular momentum they retain in the assembly process; as well
as the radial distribution and mass scalings of the dark matter halos. There
has been steady progress in our understanding of these processes in recent
years, mainly as sophisticated N-body and hydrodynamical simulation techniques
have enabled the numerical realization of galaxy models of ever increasing
complexity, realism, and appeal. These simulations have now clarified the
origin of these galaxy scaling laws in a universe dominated by cold dark
matter: these relations arise from the tight (but highly non-linear) relations
between (i) galaxy mass and halo mass, (ii) galaxy size and halo characteristic
radius; and (iii) from the self-similar mass nature of cold dark matter halo
mass profiles. The excellent agreement between simulated and observed galaxy
scaling laws is a resounding success for the LCDM cosmogony on the highly
non-linear scales of individual galaxies.Comment: Contribution to the Proceedings of the Simons Conference
"Illuminating Dark Matter", held in Kruen, Germany, in May 2018, eds. R.
Essig, K. Zurek, J. Fen
Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor
Current cosmological models indicate that the Milky Way's stellar halo was
assembled from many smaller systems. Based on the apparent absence of the most
metal-poor stars in present-day dwarf galaxies, recent studies claimed that the
true Galactic building blocks must have been vastly different from the
surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in
the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt
on this conclusion. However, verification of the iron-deficiency and
measurements of additional elements, such as the alpha-element Mg, are
mandatory for demonstrating that the same type of stars produced the metals
found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars
be conclusively linked to early stellar halo assembly. Here we report
high-resolution spectroscopic abundances for 11 elements in S1020549,
confirming the iron abundance of less than 1/4000th that of the Sun, and
showing that the overall abundance pattern mirrors that seen in low-metallicity
halo stars, including the alpha-elements. Such chemical similarity indicates
that the systems destroyed to form the halo billions of years ago were not
fundamentally different from the progenitors of present-day dwarfs, and
suggests that the early chemical enrichment of all galaxies may be nearly
identical.Comment: 16 pages, including 2 figures. Accepted for publication in Nature. It
is embargoed for discussion in the press until formal publication in Natur
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
The remnants of galaxy formation from a panoramic survey of the region around M31
In hierarchical cosmological models, galaxies grow in mass through the
continual accretion of smaller ones. The tidal disruption of these systems is
expected to result in loosely bound stars surrounding the galaxy, at distances
that reach times the radius of the central disk. The number,
luminosity and morphology of the relics of this process provide significant
clues to galaxy formation history, but obtaining a comprehensive survey of
these components is difficult because of their intrinsic faintness and vast
extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We
detect stars and coherent structures that are almost certainly remnants of
dwarf galaxies destroyed by the tidal field of M31. An improved census of their
surviving counterparts implies that three-quarters of M31's satellites brighter
than await discovery. The brightest companion, Triangulum (M33), is
surrounded by a stellar structure that provides persuasive evidence for a
recent encounter with M31. This panorama of galaxy structure directly confirms
the basic tenets of the hierarchical galaxy formation model and reveals the
shared history of M31 and M33 in the unceasing build-up of galaxies.Comment: Published in Nature. Supplementary movie available at
https://www.astrosci.ca/users/alan/PANDAS/Latest%20news%3A%20movie%20of%20orbit.htm
Secular evolution versus hierarchical merging: galaxy evolution along the Hubble sequence, in the field and rich environments
In the current galaxy formation scenarios, two physical phenomena are invoked
to build disk galaxies: hierarchical mergers and more quiescent external gas
accretion, coming from intergalactic filaments. Although both are thought to
play a role, their relative importance is not known precisely. Here we consider
the constraints on these scenarios brought by the observation-deduced star
formation history on the one hand, and observed dynamics of galaxies on the
other hand: the high frequency of bars and spirals, the high frequency of
perturbations such as lopsidedness, warps, or polar rings.
All these observations are not easily reproduced in simulations without
important gas accretion. N-body simulations taking into account the mass
exchange between stars and gas through star formation and feedback, can
reproduce the data, only if galaxies double their mass in about 10 Gyr through
gas accretion. Warped and polar ring systems are good tracers of this
accretion, which occurs from cold gas which has not been virialised in the
system's potential. The relative importance of these phenomena are compared
between the field and rich clusters. The respective role of mergers and gas
accretion vary considerably with environment.Comment: 18 pages, 8 figures, review paper to "Penetrating Bars through Masks
of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", Pilanesberg, ed.
D. Block et al., Kluwe
Emergent complex neural dynamics
A large repertoire of spatiotemporal activity patterns in the brain is the
basis for adaptive behaviour. Understanding the mechanism by which the brain's
hundred billion neurons and hundred trillion synapses manage to produce such a
range of cortical configurations in a flexible manner remains a fundamental
problem in neuroscience. One plausible solution is the involvement of universal
mechanisms of emergent complex phenomena evident in dynamical systems poised
near a critical point of a second-order phase transition. We review recent
theoretical and empirical results supporting the notion that the brain is
naturally poised near criticality, as well as its implications for better
understanding of the brain
Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation
Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this.
Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum.
Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
Primordial Black Holes: sirens of the early Universe
Primordial Black Holes (PBHs) are, typically light, black holes which can
form in the early Universe. There are a number of formation mechanisms,
including the collapse of large density perturbations, cosmic string loops and
bubble collisions. The number of PBHs formed is tightly constrained by the
consequences of their evaporation and their lensing and dynamical effects.
Therefore PBHs are a powerful probe of the physics of the early Universe, in
particular models of inflation. They are also a potential cold dark matter
candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X.
Calmet (Springer, 2014
Two Stellar Components in the Halo of the Milky Way
The halo of the Milky Way provides unique elemental abundance and kinematic
information on the first objects to form in the Universe, which can be used to
tightly constrain models of galaxy formation and evolution. Although the halo
was once considered a single component, evidence for its dichotomy has slowly
emerged in recent years from inspection of small samples of halo objects. Here
we show that the halo is indeed clearly divisible into two broadly overlapping
structural components -- an inner and an outer halo -- that exhibit different
spatial density profiles, stellar orbits and stellar metallicities (abundances
of elements heavier than helium). The inner halo has a modest net prograde
rotation, whereas the outer halo exhibits a net retrograde rotation and a peak
metallicity one-third that of the inner halo. These properties indicate that
the individual halo components probably formed in fundamentally different ways,
through successive dissipational (inner) and dissipationless (outer) mergers
and tidal disruption of proto-Galactic clumps.Comment: Two stand-alone files in manuscript, concatenated together. The first
is for the main paper, the second for supplementary information. The version
is consistent with the version published in Natur
- …
