33 research outputs found

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells

    Get PDF
    BACKGROUND:The ability to properly model intravascular steps in metastasis is essential in identifying key physical, cellular, and molecular determinants that can be targeted therapeutically to prevent metastatic disease. Research on the vascular microenvironment has been hindered by challenges in studying this compartment in metastasis under conditions that reproduce in vivo physiology while allowing facile experimental manipulation. METHODOLOGY/PRINCIPAL FINDINGS:We present a microfluidic vasculature system to model interactions between circulating breast cancer cells with microvascular endothelium at potential sites of metastasis. The microfluidic vasculature produces spatially-restricted stimulation from the basal side of the endothelium that models both organ-specific localization and polarization of chemokines and many other signaling molecules under variable flow conditions. We used this microfluidic system to produce site-specific stimulation of microvascular endothelium with CXCL12, a chemokine strongly implicated in metastasis. CONCLUSIONS/SIGNIFICANCE:When added from the basal side, CXCL12 acts through receptor CXCR4 on endothelium to promote adhesion of circulating breast cancer cells, independent of CXCL12 receptors CXCR4 or CXCR7 on tumor cells. These studies suggest that targeting CXCL12-CXCR4 signaling in endothelium may limit metastases in breast and other cancers and highlight the unique capabilities of our microfluidic device to advance studies of the intravascular microenvironment in metastasis

    Mechanisms of leukocyte migration across the blood–retina barrier

    Get PDF
    Immune-mediated inflammation in the retina is regulated by a combination of anatomical, physiological and immuno-regulatory mechanisms, referred to as the blood–retina barrier (BRB). The BRB is thought to be part of the specialised ocular microenvironment that confers protection or “immune privilege” by deviating or suppressing destructive inflammation. The barrier between the blood circulation and the retina is maintained at two separate anatomical sites. These are the endothelial cells of the inner retinal vasculature and the retinal pigment epithelial cells on Bruch’s membrane between the fenestrated choroidal vessels and the outer retina. The structure and regulation of the tight junctions forming the physical barrier are described. For leukocyte migration across the BRB to occur, changes are needed in both the leukocytes themselves and the cells forming the barrier. We review how the blood–retina barrier is compromised in various inflammatory diseases and discuss the mechanisms controlling leukocyte subset migration into the retina in uveoretinitis in more detail. In particular, we examine the relative roles of selectins and integrins in leukocyte interactions with the vascular endothelium and the pivotal role of chemokines in selective recruitment of leukocyte subsets, triggering adhesion, diapedesis and migration of inflammatory cells into the retinal tissue

    Influence of Ageing on the Microarchitecture of the Spleen and Lymph Nodes

    Get PDF
    The elderly have a decreased response to vaccination and an increased susceptibility to infectious diseases. The spleen and lymph nodes are important secondary lymphoid organs where immune cells can rapidly respond to pathogenic material in the blood and lymph in order to mount long-term adaptive immune responses to those pathogens. In aged mice and humansstructural changes occur to both the spleen and lymph nodes. These structural changes affect the functioning of the immune cells within, which may ultimate result in less effective or decreased immune responses. This review describes our current understanding of the structural 30 changes that occur to the spleen and lymph nodes of elderly mice. However, where data are available, we also discuss whether similar changes occur in tissues from elderly humans. Aparticular focus is made on how these structural changes are considered to impact on the functioning of the immune cells within. The world’s population is currently living longer than ever before. The increased incidence and severity of infectious diseases in the elderly has the potential to have a significant impact on the health care system if solutions are not identified.A thorough understanding of the molecular causes of these ageing-related structural changes to the spleen and lymph nodes may help to identify novel treatments that could repair them, and in doing so, improve immune responses and vaccine efficacy in the elderly
    corecore