668 research outputs found
Happiness and education: troubling students for their own contentment
Currently higher education strategies seem to concentrate on the expedient, developing skills that can secure employment in the world of work. Following Dreyfus and Spinosa (2003), this may have immediate advantages, but in totalising pedagogic practices it may restrict our openness to people and to our own contentment with ourselves. Valuable as this may be as a way to satisfy politico-economic policy imperatives, it strays from education as an edifying process where personal development represents, through the facing up to distress and despair, an unsettling of our developing identity and a negation of our immediate desire satisfaction. Such an unsettling is not intended to give pleasure or satisfaction in the normative way in which the imperative of happiness has been used in student satisfaction surveys or in the wider societal context that this totalisation represents (Ahmed 2010). What I propose for higher education is not a dominant priority to feed the happiness for others but a mission to personal contentment revealed through realising student potentialities to them and so recognising their limitations as part of seeking an attunement to contentment
Radio pulsar populations
The goal of this article is to summarize the current state of play in the
field of radio pulsar statistics. Simply put, from the observed sample of
objects from a variety of surveys with different telescopes, we wish to infer
the properties of the underlying sample and to connect these with other
astrophysical populations (for example supernova remnants or X-ray binaries).
The main problem we need to tackle is the fact that, like many areas of
science, the observed populations are often heavily biased by a variety of
selection effects. After a review of the main effects relevant to radio
pulsars, I discuss techniques to correct for them and summarize some of the
most recent results. Perhaps the main point I would like to make in this
article is that current models to describe the population are far from complete
and often suffer from strong covariances between input parameters. That said,
there are a number of very interesting conclusions that can be made concerning
the evolution of neutron stars based on current data. While the focus of this
review will be on the population of isolated Galactic pulsars, I will also
briefly comment on millisecond and binary pulsars as well as the pulsar content
of globular clusters and the Magellanic Clouds.Comment: 16 pages, 6 figures, to appear in Proceedings of ICREA Workshop on
The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain,
2010 April 12-16 (Springer
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
“Making voices heard…”: Index on Censorship as Advocacy Journalism
The magazine Index on Censorship has sought, since its launch in 1972, to provide a space where censorship and abuses against freedom of expression have been identified, highlighted and challenged. Originally set up by a collection of writers and intellectuals who were concerned at the levels of state censorship and repression of artists in and under the influence of the Soviet Union and elsewhere, ‘Index’ has provided those championing the values of freedom of expression with a platform for highlighting human rights abuses, curtailment of civil liberties and formal and informal censorship globally. Charting its inception and development between 1971 and 1974, the paper is the first to situate the journal within the specific academic literature on activist media (Janowitz, 1975; Waisbord, 2009; Fisher, 2016). In doing so the paper advances an argument which draws on the drivers and motivations behind the publication’s launch to signal the development of a particular justification or ‘advocacy’ of a left-libertarian civic model of freedom of speech
Creating Creative Technologists: playing with(in) education
Since the industrial revolution, the organization of knowledge into distinct scientific, technical or creative categories has resulted in educational systems designed to produce and validate particular occupations. The methods by which students are exposed to different kinds of knowledge are critical in creating and reproducing individual, professional or cultural identities. (“I am an Engineer. You are an Artist”). The emergence of more open, creative and socialised technologies generates challenges for discipline-based education. At the same time, the term “Creative Technologies” also suggests a new occupational category (“I am a Creative Technologist”).
This chapter presents a case-study of an evolving ‘anti-disciplinary’ project-based degree that challenges traditional degree structures to stimulate new forms of connective, imaginative and explorative learning, and to equip students to respond to a changing world. Learning is conceived as an emergent process; self-managed by students through critique and open peer review. We focus on ‘playfulness’ as a methodology for achieving multi-modal learning across the boundaries of art, design, computer science, engineering, games and entrepreneurship. In this new cultural moment, playfulness also re-frames the institutional identities of teacher and learner in response to new expectations for learning
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Assessment of motor functioning in the preschool period
The assessment of motor functioning in young children has become increasingly important in recent years with the acknowledgement that motor impairment is linked with cognitive, language, social and emotional difficulties. However, there is no one gold standard assessment tool to investigate motor ability in children. The aim of the current paper was to discuss the issues related to the assessment of motor ability in young pre-school children and to provide guidelines on the best approach for motor assessment. The paper discusses the maturational changes in brain development at the preschool level in relation to motor ability. Other issues include sex differences in motor ability at this young age, and evidence for this in relation to sociological versus biological influences. From the previous literature it is unclear what needs to be assessed in relation to motor functioning. Should the focus be underlying motor processes or movement skill assessment? Several key assessment tools are discussed that produce a general measure of motor performance followed by a description of tools that assess specific skills, such as fine and gross motor, ball and graphomotor skills. The paper concludes with recommendations on the best approach in assessing motor function in pre-school children
Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe
Seismic tomography and the isotope geochemistry of Cenozoic volcanic rocks suggest the existence of a large, sheet-like region of upwelling in the upper mantle which extends from the eastern Atlantic Ocean to central Europe and the western Mediterranean. A belt of extension and rifting in the latter two areas appears to lie above the intersection of the centre of the upwelling region with the base of the lithosphere. Lead, strontium and neodymium isotope data for all three regions converge on a restricted composition, inferred to be that of the upwelling mantle
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
- …
