6,680 research outputs found

    Proplyds around a B1 star: 42 orionis in NGC 1977

    Get PDF
    © 2016. The American Astronomical Society. All rights reserved. We present the discovery of seven new proplyds (i.e., sources surrounded by cometary Hα emission characteristic of offset ionization fronts (IFs)) in NGC 1977, located about 30′ north of the Orion Nebula Cluster (ONC) at a distance of ∼400 pc. Each of these proplyds is situated at projected distances 0.04-0.27 pc from the B1V star 42 Orionis (c Ori), which is the main source of UV photons in the region. In all cases the IFs of the proplyds are clearly pointing toward the common ionizing source, 42 Ori, and six of the seven proplyds clearly show tails pointing away from it. These are the first proplyds to be found around a B star, with previously known examples instead being located around O stars, including those in the ONC around θ 1 Ori C. The radii of the offset IFs in our proplyds are between ∼200 and 550 au; two objects also contain clearly resolved central sources that we associate with disks of radii 50-70 au. The estimated strength of the FUV radiation field impinging on the proplyds is around 10-30 times less than that incident on the classic proplyds in the ONC. We show that the observed proplyd sizes are however consistent with recent models for FUV photoevaporation in relatively weak FUV radiation fields

    XMM-Newton discovery of O VII emission from warm gas in clusters of galaxies

    Full text link
    XMM-Newton recently discovered O VII line emission from ~2 million K gas near the outer parts of several clusters of galaxies. This emission is attributed to the Warm-Hot Intergalactic Medium. The original sample of clusters studied for this purpose has been extended and two more clusters with a soft X-ray excess have been found. We discuss the physical properties of the warm gas, in particular the density, spatial extent, abundances and temperature.Comment: 8 pages, 3 figures, conference "Soft X-ray emission from clusters of galaxies and related phenomena", ed. R. Lieu, Kluwer, in pres

    Electrospinning of poly(methyl methacrylate) nanofibers in a pump-free process

    Full text link
    The effects of processing parameters, including solution concentration, viscosity, nozzle diameter, voltage bias and the nozzle to collector distance, on the morpho logy and diameters of poly(methyl methacrylate) (PMMA) fibers have been systematically investigated, using a unique pump-free electrospinning method. For PMMA solution concentrations less than the critical entanglement concentration, c e, prolate spheroidshaped droplets or beads with fibers were formed, whereas at concentrations above c e, good quality beadfree fibers were formed. Quantitative analysis revealed a linear dependence between the solution viscosity and fiber diameter. Larger fiber diameters were achieved by increasing the nozzle diameter and voltage bias. Increasing the bias voltage has the additional effect of broadening the diameter distribution, as a result of splaying and splitting. By contrast, when the strength of the electrical field was reduced by increasing the distance between the nozzle and collector, the overall fiber dia meter was reduced

    Increased risk of noninfluenza respiratory virus infections associated with receipt of inactivated influenza vaccine

    Get PDF
    We randomized 115 children to trivalent inactivated influenza vaccine (TIV) or placebo. Over the following 9 months, TIV recipients had an increased risk of virologically-confirmed non-influenza infections (relative risk: 4.40; 95 confidence interval: 1.31-14.8). Being protected against influenza, TIV recipients may lack temporary non-specific immunity that protected against other respiratory viruses. © 2012 The Author.postprin

    Measuring portfolio performance using a modified measure of risk

    Get PDF
    This paper reports the results of an investigation into the properties of a theoretical modification of beta proposed by Leland (1999) and based on earlier work of Rubinstein (1976). It is shown that when returns are elliptically symmetric, beta is the appropriate measure of risk and that there are other situations in which the modified beta will be similar to the traditional measure based on the capital asset pricing model. For the case where returns have a normal distribution, it is shown that the criterion either does not exist or reduces exactly to the conventional beta. It is therefore conjectured that the modified measure will only be useful for portfolios that have nonstandard return distributions which incorporate skewness. For such situations, it is shown how to estimate the measure using regression and how to compare the resulting statistic with a traditional estimated beta using Hotelling's test. An empirical study based on stocks from the FTSE350 does not find evidence to support the use of the new measure even in the presence of skewness.Journal of Asset Management (2007) 7, 388-403. doi:10.1057/palgrave.jam.225005

    Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity

    Full text link
    We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure

    Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors.

    Get PDF
    BackgroundIn 31 solid tumor patients treated with the demethylating agent decitabine, we performed tumor biopsies before and after the first cycle of decitabine and used immunohistochemistry (IHC) to assess whether decitabine increased expression of various membrane transporters. Resistance to chemotherapy may arise due to promoter methylation/downregulation of expression of transporters required for drug uptake, and decitabine can reverse resistance in vitro. The endocytosis regulator RhoA, the folate carriers FOLR1 and RFC1, and the glucose transporter GLUT4 were assessed.ResultsPre-decitabine RhoA was higher in patients who had received their last therapy >3 months previously than in patients with more recent prior therapy (P = 0.02), and varied inversely with global DNA methylation as assessed by LINE1 methylation (r = -0.58, P = 0.006). Tumor RhoA scores increased with decitabine (P = 0.03), and RFC1 also increased in patients with pre-decitabine scores ≤150 (P = 0.004). Change in LINE1 methylation with decitabine did not correlate significantly with change in IHC scores for any transporter assessed. We also assessed methylation of the RFC1 gene (alias SLC19A1). SLC19A1 methylation correlated with tumor LINE1 methylation (r = 0.45, P = 0.02). There was a small (statistically insignificant) decrease in SLC19A1 methylation with decitabine, and there was a trend towards change in SLC19A1 methylation with decitabine correlating with change in LINE1 methylation (r = 0.47, P <0.15). While SLC19A1 methylation did not correlate with RFC1 scores, there was a trend towards an inverse correlation between change in SLC19A1 methylation and change in RFC1 expression (r = -0.45, P = 0.19).ConclusionsIn conclusion, after decitabine administration, there was increased expression of some (but not other) transporters that may play a role in chemotherapy uptake. Larger patient numbers will be needed to define the extent to which this increased expression is associated with changes in DNA methylation

    Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor

    Full text link
    The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity

    Monoclonal antibodies for copper-64 PET dosimetry and radioimmunotherapy

    Get PDF
    BACKGROUND: We previously described a two-antibody model of (64)Cu radioimmunotherapy to evaluate low-dose, solid-tumor response. This model was designed to test the hypothesis that cellular internalization is critical in causing tumor cell death by mechanisms in addition to radiation damage. The purpose of the present study was to estimate radiation dosimetry for both antibodies (mAbs) using positron emission tomography (PET) imaging and evaluate the effect of internalization on tumor growth. RESULTS: Dosimetry was similar between therapy groups. Median time to tumor progression to 1 g ranged from 7–12 days for control groups and was 32 days for both treatment groups (p < 0.0001). No statistically significant difference existed between any control group or between the treatment groups. MATERIAL AND METHODS: In female nude mice bearing LS174T colon carcinoma xenografts, tumor dosimetry was calculated using serial PET images of three mice in each group of either internalizing (64)Cu-labeled DOTA-cBR96 (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) or non-internalizing (64)Cu-labeled DOTA-cT84.66 from 3 to 48 h. For the therapy study, controls (n = 10) received saline, DOTA-cBR96 or DOTA-cT84.66. Treatment animals (n = 9) received 0.890 mCi of (64)Cu-labeled DOTA-cBR96 or 0.710 mCi of (64)Cu-labeled DOTA-cT84.66. Tumors were measured daily. CONCLUSIONS: PET imaging allows the use of (64)Cu for pre-therapy calculation of tumor dosimetry. In spite of highly similar tumor dosimetry, an internalizing antibody did not improve the outcome of (64)Cu radioimmunotherapy. Radio-resistance of this tumor cell line and copper efflux may have confounded the study. Further investigations of the therapeutic efficacy of (64)Cu-labeled mAbs will focus on interaction between (64)Cu and tumor suppressor genes and copper chaperones

    Correcting pervasive errors in RNA crystallography through enumerative structure prediction

    Full text link
    Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average Rfree factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models
    corecore